Chem 4A Exam 3

TOTAL POINTS

84 / 100

QUESTION 1
11.15 / 5

- 5 pts incorrect: a
- 5 pts incorrect: b
- 5 pts incorrect: c
\checkmark - 0 pts correct: d
- 5 pts incorrect

QUESTION 2

$21.25 / 5$

- 5 pts incorrect: A
- 5 pts incorrect: B
\checkmark - 0 pts correct: C
- 5 pts incorrect: D

QUESTION 3

$31.35 / 5$
 \checkmark - 0 pts Correct (answer C)
 - 5 pts Incorrect

QUESTION 4

$41.45 / 5$
$\checkmark-0$ pts Correct (answer C)

- 5 pts Incorrect

QUESTION 5

```
51.55/5
    \checkmark - 0 pts Correct (answer B)
    -5 pts Incorrect
```


QUESTION 6

$626 / 9$

- 3 pts delta U is supposed to be negative
- 3 pts w is supposed to be negative
$\checkmark-3$ pts delta H is supposed to be negative
- $\mathbf{0}$ pts correct

QUESTION 7
73.a $3 / 6$
$\checkmark+2$ pts True
+4 pts Correct Explanation. Includes ideal gas law
with p equal to the partial pressure of the gas solved for pressure, showing the expression for pressure includes n / V, which equals concentration +2 pts Explanation correct without explicitly showing that partial pressure is equal to an expression for concentration
$\checkmark+1$ pts On the right track but no mention of ideal gas law or concentration expression + 0 pts Wrong True/False

QUESTION 8

83.b 6 / 6

$\checkmark+2$ pts False
$\checkmark+4$ pts Correct explanation. Delta H of formation is only zero for elements in the reference state

+ 0 pts Wrong True/False

QUESTION 9

$93 . \mathrm{C} 0 / 6$
+2 pts False
+4 pts Correct Explanation. Delta H is heat of reaction at constant pressure, can't guarantee sign of heat with varied pressures
$\checkmark+0$ pts Wrong True/False

+ 2 pts Discussed mechanism of determining delta H without discussing change in pressure

QUESTION 10

1048 / 8
$\checkmark+4$ pts Correct Mass of Oxygen
$\checkmark+2$ pts Correct Moles
$\checkmark+2$ pts Correct Manipulation of Ideal Gas Law

```
+0 pts Completely Incorrect
-1 pts Wrong Temperature Used
- O.5 pts Wrong Significant Figures
-1.5 pts Wrong Pressure Used
-1 pts Calculation Error
+0 pts Click here to replace this description.
```

```
QUESTION 11
```

QUESTION 11
115.a 5 / 5
115.a 5 / 5
V + 2 pts Recognize constant pressure is higher
V + 2 pts Recognize constant pressure is higher
V + 3 pts Give physical explanation in details
V + 3 pts Give physical explanation in details
+1 pts Just give the values of two heat capacities
+1 pts Just give the values of two heat capacities
+0 pts Incorrect Answer

```
    +0 pts Incorrect Answer
```


QUESTION 12

12 5.b 5 / 5

```
V +2 pts Recognize diatomic gas is higher
```

V +2 pts Recognize diatomic gas is higher
V + 3 pts Give physical explanation in details
+0 pts Incorrect Answer

```

\section*{QUESTION 13}
```

136.a 6 / 6

```
136.a 6 / 6
        V + 6 pts Correct
        V + 6 pts Correct
            +3 pts Correct heat of reaction, but not for 1 mol
            +3 pts Correct heat of reaction, but not for 1 mol
    octane
    octane
    +0 pts Incorrect
    +0 pts Incorrect
QUESTION 14
14 6.b 2 / }
    +6 pts Correct
    \checkmark +2 pts Correct equation, incorrect answer
    +0 pts Incorrect
QUESTION 15
1578/8
```

```
\(\checkmark+8\) pts Correct
```

$\checkmark+8$ pts Correct
+2 pts Kinetic Energy $=1 / 2^{*} M^{*} V^{\wedge} 2$ with
+2 pts Kinetic Energy $=1 / 2^{*} M^{*} V^{\wedge} 2$ with
calculations
calculations
+ 2 pts Equipartition Energy = 3/2 RT with
+ 2 pts Equipartition Energy = 3/2 RT with
calculations
calculations
+ 2 pts Correct units ($\mathrm{kg} / \mathrm{mol}$ for molecular weight, R
+ 2 pts Correct units ($\mathrm{kg} / \mathrm{mol}$ for molecular weight, R
$=8.3145, \mathrm{~V}=10 \mathrm{~m} / \mathrm{s}, \mathrm{T}=300 \mathrm{~K})$

```
    \(=8.3145, \mathrm{~V}=10 \mathrm{~m} / \mathrm{s}, \mathrm{T}=300 \mathrm{~K})\)
```


Midterm 3

Potentially useful equations:

Kinetic energy: $K E=m v^{2} / 2$
Gravitational potential energy: $E_{\mathrm{g}}=m g h$
Result of the kinetic theory of gases: $P V=\frac{1}{3} N m v^{2}$
Mean free path of gas molecules: $\lambda=\frac{1}{\sqrt{2} n_{V} \pi d^{2}}$
Maxwell-Boltzmann distribution: $f(v)=4 \pi v^{2}\left[\frac{M}{2 \pi R T}\right]^{3 / 2} \exp \left[-\frac{1}{2} \frac{M v^{2}}{R T}\right]$
Van der Waals equation: $\left[P+a\left(\frac{n}{V}\right)^{2}\right](V-n b)=n R T$; "Compressibility Factor": $z=\frac{P V}{n R T}$
Work in reversible isothermal processes: $w=-n R T \ln \frac{V_{\infty}}{V_{1}}=-n R T \ln \frac{P_{1}}{P_{\infty}}$

Potentially useful constants:

$g=9.8 \mathrm{~m} / \mathrm{s}^{2} ; 1 \mathrm{~atm} \sim 101325 \mathrm{~Pa} \sim 760 \mathrm{~mm} \mathrm{Hg} ; 1 \mathrm{bar}=10^{5} \mathrm{~Pa}$
$R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
$k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$
$T\left(0^{\circ} \mathrm{C}\right)=273.15 \mathrm{~K}$
$1 \mathrm{cal}=4.18 \mathrm{~J}$
Density of liquids: $\rho\left(\mathrm{H}_{2} \mathrm{O}\right)=1.00 \mathrm{~g} / \mathrm{mL} ; \rho(\mathrm{Hg})=13.6 \mathrm{~g} / \mathrm{mL}$
Relative atomic mass: $\mathrm{H}=1, \mathrm{C}=12, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{Cl}=35.5$
$N_{\text {A }}=6.02 \times 10^{23}$

Full score of this exam is 100 points.

Question 1. Multiple choices (5 pts each question; only one correct answer for each question)

1. The typical air temperature in a hot air balloon is $\sim 100^{\circ} \mathrm{C}\left(212{ }^{\circ} \mathrm{F}\right)$. The mass density of this air should thus be () of the ambient air at $\sim 25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$.
A. 25%
B. 36%
$D_{1}=\frac{\mu}{4} \quad P_{2}=\frac{\mu}{L_{2}}$
C. 50\%

2. Given that the root-mean-square velocity of N_{2} is $\sim 500 \mathrm{~m} / \mathrm{s}$ at room temperature, the root-mean-square velocity of H_{2} at room temperature can be estimated as:
A. $134 \mathrm{~m} / \mathrm{s}$

$V_{N_{0}}=\frac{3 R R 1}{\frac{2 K R}{2}}$
$70 \mathrm{~m} / \mathrm{s}$
D. $7000 \mathrm{~m} / \mathrm{s}$

3. The electrolysis of water provides a way to generate H_{2}. At room temperature, to produce 1000 L of H_{2} this way would approximately consume this amount of water: (
)
A. 1 mL
$\frac{P V}{R T}=\frac{1.100 \mathrm{~B} \cdot 10 \mathrm{~mL}}{00^{2057294} \approx 40}$
C. 1 L
D. 10 L
$P L=a R^{T}$
${ }_{2} \rightarrow$ lond $1 \mathrm{H}_{2} \mathrm{O}$.
$\frac{189}{201}$
7369
4. In the van der Waal equation (Page 1), the factor a is introduced to correct for: (
A. the volume occupied by the molecules themselves
B. effects due to the distribution of velocity for the different molecules
C. effects of (attractive) forces between molecules
D. momentum changes when molecules collide
E. statistical variations resulting from the crooked paths traveled by molecules
5. When the same amount of heat q is separately transferred to two copper blocks A and B , the two blocks increased in temperature by $10^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$, respectively. In a different experiment, the copper blocks A and B are put into contact with each other, and the same amount of heat q is transferred to this combined system. We thus expect the temperature change for the system to be: ()
A. $4^{\circ} \mathrm{C}$
B. $6.7^{\circ} \mathrm{C}$
C. $15^{\circ} \mathrm{C}$
D. $30^{\circ} \mathrm{C}$
$q=10 A_{C}=20 \mathrm{BC}$
$10 A_{C}=20 B_{C}$
$A=213$
$q=(A+B)_{c} \Delta T$
$20 \mathrm{BC}=\begin{gathered}(2 \mathrm{~B}+\hat{8})(\Delta T \\ 200=3 B D T \quad \Delta T=\frac{22}{3}=\end{gathered}$
Question 2. (9 pts) An ideal gas system went through adiabatic ($\boldsymbol{q}=\mathbf{0}$) expansion at 1 atm external pressure. In this process, what is the sign for each of the below 3 items? Write "+", " 0 ", or "-" for each item.

For the below questions, for full credit, please show your work and respond below each question. Work in the margins will not be graded.

Question 3. (6 pts per question) Analysis: Are the following statements true or false? For each statement, first state unequivocally whether the statement is true or false (2 pts). Afterward, for statements you answer "true", discuss the mechanisms. For statements you answer "false", either discuss the mechanisms or give one specific counter-example to disprove the statement. (4 pts for the explanation)
(a) At a given, fixed temperature, the partial pressure of a gas species effectively defines its concentration.

$$
\begin{aligned}
& \text { True Daltong lan of portal presure states that the partial presume } \\
& \sigma^{f} a \text { gas species is equal to its } m \text { ole fraction times the total } \\
& \text { pressure, effectively giving a measure of the gas species conertactin }
\end{aligned}
$$

(b) The standard enthalpy of formation is 0 for any pure element.

False, standard enthalpy of formation is defied as of for the reference, Or mast stable state of an element. For example, diann and is pune carbon, but its standard enthalpy of fum anion is not zerobecanfe the reference state of carbon is graphite.
(c) If the calculated ΔH for a given reaction is <0, we predict the reaction to be exothermic under any experimental conditions.
True, it a given reaction releases hear, n, change in conditions can cause that sums reaction to bsorb heat. Th heat released or coasumpl by areuction is determined by the bonds made or broken
in the reaction, which cannot be changed beexfencl Conditions
Question 4. (8 pts) A tank of compressed air of a fixed volume of 22.4 L operated at $0{ }^{\circ} \mathrm{C}$. The tank pressure was 100 atm and 50 atm before and after operation, respectively. Calculate the mass of oxygen $\left(\mathrm{O}_{2}\right)$ released, assuming that the mole fraction of O_{2} in the compressed air to be 20%.

$$
\begin{aligned}
& \text { PV=~RT } \\
& n_{i}=\frac{P V}{R T}+P=P_{O_{2}}=0.20 P_{\text {Tat }} \\
& n i=\frac{0.20 T_{T_{02}} V}{R T}=\frac{0.20 \cdot 100 \mathrm{~atm} \cdot 224 \mathrm{C}}{0.082057 \cdot 273 \mathrm{k}}=19.999=20 \mathrm{~mol} \mathrm{O}_{2} \\
& n_{f}=\frac{0.20 \text { prot }}{R T}=\frac{0.20 \cdot 50 \mathrm{~km} \cdot 22.4 \mathrm{~L}}{0.082057 .213 \mathrm{~F}}=10.044=10 \mathrm{~mol} 0_{2}
\end{aligned}
$$

Chemistry 4A, Fall 2019

Question 5. (10 pts) When considering the heat capacity of ideal gases:
(a) (5 pts) We showed in our lectures that the heat capacity of 1 mol of monatomic gas at constant pressure to be different from its heat capacity at constant volume. Which one is higher? Why?
beat capacity at constant pressure is higher t ban at constant volume, because at constant pressure. Some of the added heat is expended by the gas expanding and doing work, whereas at constant column e ail the hent yobs tana raising the temperature.
(b) (5 pts) For the heat capacity of 1 mol of ideal gases at constant volume: is the expected value higher, lower, or the same for a diatomic gas (e.g., N_{2}) vs. a monatomic gas? Why? The beat capacity fo- diatomic gases is expected to be higher because diatomic gases have rotational degrees of freedom, which per the equipurtitian theorem, have equal energy to the translational deyoer of freedom that contribute to temperatione.
Question 6. (12 pts) Octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ is a major component of gasoline, and its combustion can be written as: lao Octan

$$
2 \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})+25 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

(a) (6 pts) Given $\Delta_{f} H^{\circ}\left[\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{l})\right]=-250 \mathrm{~kJ} / \mathrm{mol}, \Delta_{f} H^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=-286 \mathrm{~kJ} / \mathrm{mol}$, $\Delta_{f} H^{\circ}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-394 \mathrm{~kJ} / \mathrm{mol}$, what is the expected heat of reaction for burning 1 mol octane at 1 atm ?

$$
\begin{aligned}
& \Delta H=9 \Delta^{\circ} H^{\circ}\left(H_{2} O(1)\right]+8 \Delta_{0} H^{+}\left[\left(\mathrm{O}_{2}(y)\right)\right]-\Delta_{f} H^{\circ}\left[\zeta_{8}{ }^{H}(v)\right] \\
& =9 / \operatorname{cod}(-266 \mathrm{kT} / \mathrm{alal})+8 \mathrm{~mol}(-394 \mathrm{~kJ} / \mathrm{mol})-\operatorname{mol}(-250 \mathrm{kThal}) \\
& =-2574 \mathrm{~kJ}-3152 \mathrm{~kJ}+250 \mathrm{~kJ}=-5476 \mathrm{~kJ} \rightarrow-5500 \mathrm{~kJ}
\end{aligned}
$$

(b) (6 pts) Now consider 1 mol octane burnt in a sealed bomb calorimeter at 300 K . How does the reaction heat in this case compare to that in (a), in terms of percentage?

Questions 7 \& 8 are brought to us by the good people at PG\&E. Power shutdowns were unfortunate carried out due to the concerns of high wind and low humidity conditions. So:

Question 7. (8 pts) Wind power can be modeled as the kinetic energy ($K E$; equation on Page 1) due to the directional motion of the air (MW: $29 \mathrm{~g} / \mathrm{mol}$). For a reasonably strong wind of speed v of $10 \mathrm{~m} / \mathrm{s}(22.4 \mathrm{mph})$, how does this energy compare to the microscopic kinetic energy of its gas molecules due to thermal motion at 300 K , in terms of percentage?

$$
\begin{aligned}
& 300 \mathrm{~K}, \text { in terms of percentage? } \\
& K E=\frac{1}{2} M v^{2}=\frac{1}{2} \cdot 0.0 \frac{2 \mathrm{~kg}}{\mathrm{ad}} \cdot(10 \mathrm{~m} / \mathrm{s})^{2}=1.45 \mathrm{~J} \mathrm{~mol}
\end{aligned}
$$

Themaleneryy: $3 / 2 R T=\frac{3}{2} \cdot 8.314 \cdot 3,00 \mathrm{k}=3741.3 \mathrm{~T} / \mathrm{mol}$

Question 8. (10 pts) Air humidity is typically reported as the relative humidity (RH), defined as the partial pressure of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ in the air divided by the vapor pressure of $\mathrm{H}_{2} \mathrm{O}$ at the same temperature. At 300 K , the vapor pressure of $\mathrm{H}_{2} \mathrm{O}$ is $0.0349 \mathrm{~atm}(3540 \mathrm{~Pa})$. For a room of $100 \mathrm{~m}^{3}\left(10^{5} \mathrm{~L}\right)$ volume, what is the total weight of $\mathrm{H}_{2} \mathrm{O}$ in the air for low (10%) and moderate (50%) RH, respectively?

$$
\begin{aligned}
& R H=\frac{P_{\mathrm{P}_{2} \mathrm{O}}}{P_{\text {Lir }}} \\
& P_{\text {+2 }}=R_{\mathrm{H}} \mathrm{H} \cdot P_{\text {win }}
\end{aligned}
$$

$$
\begin{aligned}
& 1006 \mathrm{RH:} P_{\mathrm{H}_{2} \mathrm{O}}=0.10 \cdot 0.0344 \mathrm{~cm}=0.003440 \mathrm{tan} \\
&
\end{aligned}
$$

$$
\frac{2344 a+m \cdot 10^{4} \mathrm{~L}}{0,082057 \cdot 300}=14.18 \mathrm{md} \cdot \mathrm{H}_{2}
$$

$$
\begin{aligned}
p v=m^{2 T} & =\frac{p V}{k T}
\end{aligned}=\frac{0.003446+2}{0.082057 \cdot 300}=
$$

$$
n=\frac{P V}{R T}=\frac{0.01745 \mathrm{~atm} \cdot 10^{5 \mathrm{~L}}}{0.082047 \cdot 300}=70.84 \mathrm{md}
$$

$$
\frac{18 \mathrm{gH}_{2} 0}{1 \mathrm{nolH}}=127544 \mathrm{7}
$$

$$
P \begin{aligned}
& 1300 g 420 \\
& a+50 \% \mathrm{RH}
\end{aligned}
$$

$$
\begin{aligned}
& \text { is } 0.039 \% \text { Kiveni every. } \\
& \text { of hiemal motion }
\end{aligned}
$$

