Chem 4A Exam 1

TOTAL POINTS

94 / 100

QUESTION 1

11 A $10 / 10$
$\checkmark+4$ pts Correct balanced chemical reaction
$\checkmark+2$ pts Correct ideal gas law
$\checkmark+0.5$ pts Correct mole fraction
$\checkmark+3$ pts Correct final answer
$\checkmark+0.5$ pts Correct units

QUESTION 2
2 1B 10 / 10
$\checkmark+1$ pts Use definition of molarity
$\checkmark+2$ pts Correct moles of propanol
$\checkmark+1$ pts Convert to moles propanol to CO2
$\checkmark+2$ pts Equation/mole conversion is balanced
$\checkmark+1$ pts Convert moles CO2 to grams
$\checkmark+1$ pts Correctly use molar mass of CO2
$\checkmark+1$ pts Correct significant figures
$\checkmark+1$ pts Correct units

- 1 pts Math error
+ $\mathbf{0}$ pts Incorrect

QUESTION 3

3 2A 10 / 10
$\checkmark+5$ pts Correct final answer
$\checkmark+3.5$ pts Correct half-reaction
$\checkmark+1.5$ pts Evidence of valid stoichiometry (attempts are counted even with wrong numbers as long as dimensional analysis is valid so as to not double count for mistakes)

+ 2.25 pts Correct thought process for obtaining half reaction, but incorrect equation (cannot coincide with "correct half-reaction")
+4.5 pts Answer off by a reasonable factor (in that I
can track your mistake) + almost correct stoichiometry
(cannot coincide with "correct final answer" or
"evidence of valid stoichiometry"); this does not count if your half reaction is wrong
+ 1 pts Correct dimensional analysis without the right numbers (cannot coincide with "evidence of valid stoichiometry"), this is a special case so as not to double count for mistakes or double count for correctness
+4.5 pts Correct final answer but wrong number of sigfigs
+ $\mathbf{0}$ pts Incorrect and incomplete

QUESTION 4

4 2B 10 / 10
$\checkmark+2$ pts Have the correct equation set up
$\checkmark+5$ pts correct calculation to answer
$\checkmark+3$ pts Get the right answer (36 mL) from part A
-1 pts Sig figs

+ 0 pts incorrect

QUESTION 5

5 3A 10 / 10
$\checkmark+0.5$ pts Mass to mol convertions for Cu
$\checkmark+2$ pts Conservation equations
$\checkmark+4$ pts Solution to the conservation equation
$\checkmark+2$ pts Mass of each component
$\checkmark+1$ pts Sig fig
$\checkmark+0.5$ pts Mass to mol convertion for O

+ $\mathbf{0}$ pts Incorrect

QUESTION 6

6 3B 10 / 10
$\checkmark+2$ pts Correct mean
$\checkmark+2$ pts Correct standard deviation
$\checkmark+2$ pts Correct t and N
$\checkmark+4$ pts Correct confidence interval based on
previously calculated values

```
    +0 pts Incorrect
QUESTION 7
7SO3 2-10/10
```

$\checkmark+2$ pts Structure $\checkmark+1$ pts Electrons
$\checkmark+1$ pts Geometry

+ 0 pts Incorrect

QUESTION 8

```
\(8 \mathrm{NO}+5\) / 10
- 0 pts Correct
\(\checkmark-2\) pts Formal Charge
\(\checkmark-1\) pts Lone Pair
- 1 pts Geometry
\(\checkmark-2\) pts Structure
- 1 pts Half Correct Structure
- 2 pts Electron Geometry
- 2 pts Molecular Geometry
```


QUESTION 9

```
9 NO2 9 / 10
\(\checkmark+2\) pts formal charge
\(\checkmark+2\) pts electron pair geometry
\(\checkmark+2\) pts molecular geometry
\(\checkmark+2\) pts Structure
\(\checkmark+1\) pts electrons
\(\checkmark+1\) pts Geometry
+ 0 pts Click here to replace this description.
+ 0 pts Click here to replace this description.
- 1 Point adjustment
Not best structure
```


QUESTION 10

```
10 PO4 3-10 / 10
\(\checkmark+2\) pts Formal charge
\(\checkmark+2\) pts Electron pair geometry
\(\checkmark+2\) pts Molecular geometry
```


Chemistry 4A, Exam I

1. (20)
2. (20)
3. (20) \qquad
4. (40)

TOTAL EXAM SCORE (100)

Rules:

- Work all problems to 2 significant figures
- No lecture notes or books permitted
- No programmable or graphing calculators permitted
- Time: 50 minutes
- Show all work to get partial credit
- All answers must be written in the boxes provided
- Periodic Table, Tables of Physical Constants, and Conversion Factors included
Periodic Table of the Elements
年

,

Physical Constants

Standard Acceleration of terrestrial gravity
Avogadro's number
Bohr radius
Boltzmann's constant
Electron Charge
Faraday constant
Masses of fundamental particles:
Electron
Proton
Neutron
Ratio of proton mass to electron mass
Permittivity of vacuum
Planck's constant
Speed of light in vacuum
Universal gas Constant
Rydberg Constant

$$
\begin{aligned}
& g=9.80665 \mathrm{~m} \mathrm{~s}^{-2}(\text { exactly }) \\
& N_{o}=6.022137 \times 10^{23} \\
& a_{o}=0.52917725 \AA=5.2917725 \times 10^{-11} \mathrm{~m} \\
& k_{B}=1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \\
& e=1.6021773 \times 10^{-19} \mathrm{C} \\
& \mathscr{F}=96,485.31 \mathrm{C} \mathrm{~mol} \\
& \\
& m_{e}=9.109390 \times 10^{-31} \mathrm{~kg} \\
& m_{p}=1.672623 \times 10^{-27} \mathrm{~kg} \\
& m_{n}=1.674929 \times 10^{-27} \mathrm{~kg} \\
& m_{\rho} / m_{e}=1836.15270 \\
& \mathrm{E}_{0}=8.8541878 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1} \\
& h=6.626076 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
& c=2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}(\text { exactly }) \\
& R=8.31451 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=0.0820578 \mathrm{~L} \text { atm } \mathrm{mol}^{-1} \mathrm{~K}^{-1} \\
& \mathrm{R}_{\infty}=e^{4} m_{e} /\left(8 \epsilon_{0}^{2} h^{2}\right)
\end{aligned}
$$

Conversion Factors

Standard Atmosphere
Atomic mass unit

Calorie
Electron volt
Foot
Gallon (U.S.)
Liter-atmosphere
Metric ton
Pound
$1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~Pa}=1.01325 \times 10^{5} \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$ (exactly)
$1 \mathrm{u}=1.660540 \times 10^{-27} \mathrm{~kg}$
$1 \mathrm{u}=1.492419 \times 10^{-10} \mathrm{~J}=931.4942 \mathrm{MeV}$ (energy equivalent from $\mathrm{E}=\mathrm{mc} 2$)
$1 \mathrm{cal}=4.184 \mathrm{~J}$ (exactly)
$1 \mathrm{eV}=1.6021773 \times 10^{-10} \mathrm{~J}=96.48531 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$1 \mathrm{ft}=12 \mathrm{in}=0.3048 \mathrm{~m}$ (exactly)
1 gallon $=4$ quarts $=3.78541 \mathrm{~L}$ (exactly)
$1 \mathrm{~L} \mathrm{~atm}=101.325 \mathrm{~J}$ (exactly)
1 metric ton $=1000 \mathrm{~kg}$ (exactly)
$1 \mathrm{lb}=16 \mathrm{oz}=0.45359237 \mathrm{~kg}$ (exactly)
\qquad

Question $1 \quad$ (10 points each)
A) What mass (g) of CO_{2} is made when 2.0 L of a stoichiometric mixture of gaseous propanol $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}\right)$ and oxygen at $1.0 \mathrm{~atm}, 300 \mathrm{~K}$ is combusted?

$$
\begin{aligned}
& 2 \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{OH}+9 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O} \\
& P V=n R T \\
& n=\frac{P V}{R T}=\frac{10 \mathrm{otn} \cdot 20 \mathrm{l}}{00820576 \cdot 300 \mathrm{k}}=8 \cdot 1 \cdot 10^{-2} \mathrm{nd} \mathrm{scs} \\
& \frac{2}{2+9}=\frac{2}{11}=x_{1,3}^{1,2}, 0 \mathrm{H}
\end{aligned}
$$

B) Calculate the mass of CO_{2} produced by complete surface combustion of 0.70 L of a 4.0 M solution of propanol $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}\right)$ in water.
$4.0 \mathrm{M} \cdot 0.70 \mathrm{~L}=2.8 \mathrm{~mol} \mathrm{C3} \mathrm{H}_{7} \mathrm{OH}$

$$
2.8 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH} \cdot \frac{6 \mathrm{~mol} \mathrm{CO}}{2 m \mathrm{CO}_{3} \mathrm{H}_{3} \mathrm{OH}} \cdot \frac{44 \cdot \cos \mathrm{gCO}_{2}}{m d \mathrm{CO}_{2}} \approx 370 \mathrm{y} \mathrm{CO}
$$

Question 2 (10 points each)

The Iodine Clock Reaction involves the reaction of iodate (IO_{3}-) with iodide ($\mathrm{I}-$) in acidic solution (\mathbf{H}_{+}) to produce iodine ($\mathbf{I}_{\mathbf{2}}$) and water.
A) Calculate the volume of $0.100 \mathrm{M} \mathrm{IO}_{3}$ - solution that will exactly react with 20.0 mL of 0.300 M Isolution.

$$
\begin{aligned}
& 10 e^{+}+12 \mathrm{Ht}^{+}+2 \mathrm{IO}_{3}^{-} \rightarrow \mathrm{I}_{2}+6 \mathrm{H}_{2} \mathrm{O} \quad 2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 e^{-} \\
& 19 e^{-}+12 \mathrm{H}^{+}+2 \mathrm{IO}_{3}^{-}+10 I_{2}^{-} \Rightarrow 6 I_{2}+6 \mathrm{H}_{2} \mathrm{O}+10 \mathrm{e}^{-}
\end{aligned}
$$

B) What volume of 0.100 M sulfite ($\mathbf{S O}_{32}$-) solution would be required to exactly react with the iodine (\mathbf{I}_{2}) produced in Part A above?

The balanced reaction is: $\quad \mathbf{S O}_{32-}+\mathbf{I}_{\mathbf{2}}+\mathbf{H}_{\mathbf{2}} \mathrm{O} \rightarrow \mathrm{SO}_{42}+\mathbf{2 I}-+\mathbf{2 H}+$

Question 3 (10 points each)
A. 1.000-g mixture of cuprous oxide, $\mathrm{Cu}_{2} \mathrm{O}$, and cupric oxide, CuO , was quantitatively reduced to 0.839 g of metallic copper. What was the mass of CuO in the original sample?

$$
\begin{aligned}
& x=y C_{n_{2} O} \quad y=y C_{n O} \quad 2 \mathrm{Cu}_{2} \mathrm{O} \rightarrow \mathbb{A C} \mathrm{Cu}_{4}+\mathrm{O}_{2} \quad 2 \mathrm{CuO} \rightarrow 2 \mathrm{Cu}_{4}+\mathrm{O}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& x=1.000-7
\end{aligned}
$$

$$
\begin{aligned}
& 0.8882 x+0.7984 y=0.839 \\
& 0.8882(1.000-y)+0.74843=0.839 \\
& 0.0843 y=0.0442 \\
& y=\frac{0.0442}{0.0843} \approx 0.55 \mathrm{yCuO}
\end{aligned}
$$

B) Four trials yield the following results for the mass of CuO produced in the above reactions:

$$
0.538 \mathrm{~g} \quad 0.716 \mathrm{~g} \quad 0.815 \mathrm{~g} \quad 0.920 \mathrm{~g}
$$

Calculate the 95% confidence interval for these results.

Table 1: " t " Values for 95% confidence interval.

Degrees of freedom	Value of " t "
1	6.314
2	2.920
3	2.353
4	2.132
5	2.015
6	1.943

$$
\begin{aligned}
& \begin{array}{l}
\bar{x}=\frac{\sum_{6}^{n} x_{i}}{n}=\frac{0.538+0.716+0.815+0.920}{4}=\frac{0.747 y}{4-1}=\sqrt{\frac{(0.588-0.747)^{2}+(0.716-0.747)^{2}+(0.815-0.74)^{2}(0.920-0.777)^{2}}{4-1}}=0.62
\end{array} \\
& s_{x}=0.162 y \\
& \bar{x} \pm \frac{t s}{\sqrt{n}} \\
& \begin{aligned}
\bar{x} \pm \frac{2.353 \cdot 0.162}{\sqrt{4}}= & \begin{array}{c}
0.747 \mathrm{~g} \pm 0.141 \mathrm{y} \\
y \text { 25, figs }
\end{array} \\
& 0.75 y \pm 0.199
\end{aligned}
\end{aligned}
$$

Question 4 (10 points each)
For the following compounds:
A. Draw the Lewis Structure, explicitly showing the formal charges and molecular geometry
B. Indicate the Electron Pair Geometry
C. Indicate the Molecular Geometry
I. Sulfite Ion (SO3-2)

II. (NO+) Ion

