# Chem 4A Exam 1

#### TOTAL POINTS

# 94 / 100

**QUESTION 1** 

- 1 1A 10 / 10
  - $\checkmark$  + 4 pts Correct balanced chemical reaction
  - ✓ + 2 pts Correct ideal gas law
  - $\checkmark$  + 0.5 pts Correct mole fraction
  - $\checkmark$  + 3 pts Correct final answer
  - ✓ + 0.5 pts Correct units

#### **QUESTION 2**

- 2 1B 10 / 10
  - $\checkmark$  + 1 pts Use definition of molarity
  - $\checkmark$  + 2 pts Correct moles of propanol
  - $\checkmark$  + 1 pts Convert to moles propanol to CO2
  - $\checkmark$  + 2 pts Equation/mole conversion is balanced
  - $\checkmark$  + 1 pts Convert moles CO2 to grams
  - $\checkmark$  + 1 pts Correctly use molar mass of CO2
  - $\checkmark$  + 1 pts Correct significant figures
  - ✓ + 1 pts Correct units
    - 1 pts Math error
    - + 0 pts Incorrect

#### **QUESTION 3**

- 3 2A 10 / 10
  - ✓ + 5 pts Correct final answer
  - ✓ + 3.5 pts Correct half-reaction

 $\checkmark$  + **1.5 pts** Evidence of valid stoichiometry (attempts are counted even with wrong numbers as long as dimensional analysis is valid so as to not double count for mistakes)

+ 2.25 pts Correct thought process for obtaining half reaction, but incorrect equation (cannot coincide with "correct half-reaction")

+ **4.5 pts** Answer off by a reasonable factor (in that I can track your mistake) + almost correct stoichiometry (cannot coincide with "correct final answer" or

"evidence of valid stoichiometry"); this does not count if your half reaction is wrong

+ 1 pts Correct dimensional analysis without the right numbers (cannot coincide with "evidence of valid stoichiometry"), this is a special case so as not to double count for mistakes or double count for correctness

+ **4.5 pts** Correct final answer but wrong number of sigfigs

+ 0 pts Incorrect and incomplete

#### **QUESTION 4**

# 4 2B 10 / 10

- $\checkmark$  + 2 pts Have the correct equation set up
- $\checkmark$  + 5 pts correct calculation to answer
- $\checkmark$  + 3 pts Get the right answer (36mL) from part A
  - 1 pts Sig figs
  - + 0 pts incorrect

#### **QUESTION 5**

# 5 3A 10 / 10

- $\checkmark$  + 0.5 pts Mass to mol convertions for Cu
- $\checkmark$  + 2 pts Conservation equations
- $\checkmark$  + 4 pts Solution to the conservation equation
- $\checkmark$  + 2 pts Mass of each component
- √ + 1 pts Sig fig
- $\checkmark$  + 0.5 pts Mass to mol convertion for O
  - + 0 pts Incorrect

#### QUESTION 6

6 3B 10 / 10

- $\checkmark$  + 2 pts Correct mean
- $\checkmark$  + 2 pts Correct standard deviation
- $\checkmark$  + 2 pts Correct t and N
- $\checkmark$  + 4 pts Correct confidence interval based on

previously calculated values

+ 0 pts Incorrect

#### **QUESTION 7**

- 7 SO3 2- 10 / 10
  - ✓ + 2 pts Best Overall Structure
  - $\checkmark$  + 2 pts Correct Formal Charge
  - $\checkmark$  + 1 pts Correct Lone Pairs
  - ✓ + 1 pts Correct Geometry
  - $\checkmark$  + 2 pts Correct Electron Pair Geometry
  - ✓ + 2 pts Correct Molecular Geometry
    - + 0 pts Wrong molecule
    - + 0 pts Incorrect

### QUESTION 8

- 8 NO+ 5 / 10
  - 0 pts Correct
  - $\checkmark$  2 pts Formal Charge
  - ✓ 1 pts Lone Pair
    - 1 pts Geometry
  - ✓ 2 pts Structure
    - 1 pts Half Correct Structure
    - 2 pts Electron Geometry
    - 2 pts Molecular Geometry

#### **QUESTION 9**

# 9 NO2 9 / 10

- $\checkmark$  + 2 pts formal charge
- $\checkmark$  + 2 pts electron pair geometry
- $\checkmark$  + 2 pts molecular geometry
- √ + 2 pts Structure
- √ + 1 pts electrons
- ✓ + 1 pts Geometry
  - + **0 pts** Click here to replace this description.
  - + **0 pts** Click here to replace this description.
- 1 Point adjustment
  - Not best structure

#### **QUESTION 10**

10 PO4 3- 10 / 10

- $\checkmark$  + 2 pts Formal charge
- $\checkmark$  + 2 pts Electron pair geometry
- $\checkmark$  + 2 pts Molecular geometry

- ✓ + 2 pts Structure
- ✓ + 1 pts Electrons
- ✓ + 1 pts Geometry
  - + 0 pts Incorrect

Chemistry 4A, Exam I **September 16, 2019 Professor R. J. Saykally** 

N

(20) 1. (20) \_\_\_\_\_ 2. 3. (20) \_\_\_\_\_ (40) 4.

# TOTAL EXAM SCORE (100)

# **Rules:**

- Work all problems to 2 significant figures
  No lecture notes or books permitted
  No programmable or graphing calculators permitted
  Time: 50 minutes
  Show all work to get partial credit
  All answers must be written in the boxes provided
  Periodic Table, Tables of Physical Constants, and Conversion Factors included





\*\*\* Discovered in Italy using a sample from Berkeley cyclotron bombardment \*\* Discovered in Chicago by Berkeley team

\* Discovered at Lawrence Berkeley National Laboratory

CSOT

# **Physical Constants**

| Standard Acceleration of terrestrial gravity | $g = 9.80665 \text{ m s}^{-2} \text{ (exactly)}$                                                  |
|----------------------------------------------|---------------------------------------------------------------------------------------------------|
| Avogadro's number                            | $N_0 = 6.022137 \text{ x } 10^{23}$                                                               |
| Bohr radius                                  | $a_0 = 0.52917725 \text{ Å} = 5.2917725 \text{ x} 10^{-11} \text{ m}$                             |
| Boltzmann's constant                         | $k_B = 1.38066 \text{ x } 10^{-23} \text{ J K}^{-1}$                                              |
| Electron Charge                              | $e = 1.6021773 \text{ x } 10^{-19} \text{ C}$                                                     |
| Faraday constant                             | $\mathcal{F} = 96,485.31 \text{ C mol}^{-1}$                                                      |
| Masses of fundamental particles:             |                                                                                                   |
| Electron                                     | $m_e = 9.109390 \text{ x } 10^{-31} \text{ kg}$                                                   |
| Proton                                       | $m_p = 1.672623 \text{ x } 10^{-27} \text{ kg}$                                                   |
| Neutron                                      | $m_n = 1.674929 \ge 10^{-27} \text{ kg}$                                                          |
| Ratio of proton mass to electron mass        | $m_p/m_e = 1836.15270$                                                                            |
| Permittivity of vacuum                       | $\epsilon_0 = 8.8541878 \text{ x } 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$            |
| Planck's constant                            | $h = 6.626076 \text{ x } 10^{-34} \text{ J s}$                                                    |
| Speed of light in vacuum                     | $c = 2.99792458 \text{ x } 10^8 \text{ m s}^{-1} \text{ (exactly)}$                               |
| Universal gas Constant                       | $R = 8.31451 \text{ J mol}^{-1} \text{ K}^{-1} = 0.0820578 \text{ L atm mol}^{-1} \text{ K}^{-1}$ |
| Rydberg Constant                             | $\mathbf{R}_{\infty} = e^4 m_e / (8  \mathbf{\epsilon}_0^2 h^2)$                                  |

# **Conversion Factors**

| Standard Atmosphere | $1 \text{ atm} = 1.01325 \text{ x} 10^5 \text{ Pa} = 1.01325 \text{ x} 10^5 \text{ kg m}^{-1} \text{ s}^{-2} \text{ (exactly)}$ |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Atomic mass unit    | $1 \text{ u} = 1.660540 \text{ x} 10^{-27} \text{ kg}$                                                                          |
|                     | $1 \text{ u} = 1.492419 \text{ x} 10^{-10} \text{ J} = 931.4942 \text{ MeV}$ (energy equivalent from E = mc2)                   |
| Calorie             | 1  cal = 4.184  J (exactly)                                                                                                     |
| Electron volt       | $1 \text{ eV} = 1.6021773 \text{ x } 10^{-10} \text{ J} = 96.48531 \text{ kJ mol}^{-1}$                                         |
| Foot                | 1  ft = 12  in = 0.3048  m (exactly)                                                                                            |
| Gallon (U.S.)       | 1 gallon = 4 quarts = $3.78541 \text{ L}$ (exactly)                                                                             |
| Liter-atmosphere    | 1 L atm = 101.325 J (exactly)                                                                                                   |
| Metric ton          | 1 metric ton = $1000 \text{ kg}$ (exactly)                                                                                      |
| Pound               | 1  lb = 16  oz = 0.45359237  kg (exactly)                                                                                       |
|                     |                                                                                                                                 |

#### Name y

## Question 1 (10 points each)

A) What mass (g) of CO<sub>2</sub> is made when 2.0 L of a stoichiometric mixture of *gaseous* propanol (C<sub>3</sub>H<sub>7</sub>OH) and oxygen at 1.0 atm, 300 K is combusted?

 $2C_{3}H_{1}OHIAO_{2} = 6CO_{2} + 8H_{2}O$   $PV = nRT = \frac{Lorin \cdot 2OL}{OB820E7E \cdot 300K} = 8:1.10^{-2} m d scs$   $\frac{2}{RT} = \frac{2}{OB820E7E \cdot 300K} = 8:1.10^{-2} m d scs$   $\frac{2}{RT} = \frac{2}{11} = X_{3}H_{3}OH$   $\frac{2}{2+9} = \frac{2}{11} = X_{3}H_{3}OH$   $\frac{2}{110} \int_{998}^{2} \frac{2}{110} \int_{10}^{2} \frac{2}{100} \int_{10}$ 

V

V

B) Calculate the mass of CO<sub>2</sub> produced by complete surface combustion of 0.70 L of a 4.0 M solution of propanol (C<sub>3</sub>H<sub>7</sub>OH) in water.

4.0M. 0.70 L= 2.8 mol C3 H3 OH 2.8mol C3 H3 OH. 6mol CO2 . 44.008 gCO2 ~ 370 g CO2 2.8mol C3 H3 OH. 6mol CO2 . 44.008 gCO2 ~ 370 g CO2

# Name \_\_\_\_\_

# Question 2 (10 points each)

The Iodine Clock Reaction involves the reaction of iodate (IO<sub>3</sub>-) with iodide (I-) in acidic solution (H+) to produce iodine (I<sub>2</sub>) and water.

A) Calculate the volume of 0.100 M IO<sub>3</sub>- solution that will exactly react with 20.0 mL of 0.300 M Isolution.

100 F12 H+ +2 I 9 -> I2+6; +20 2I-> I2+2e 

B) What volume of 0.100 M sulfite (SO32-) solution would be required to exactly react with the iodine (I2) produced in Part A above?

The balanced reaction is:

 $SO_{32-} + I_2 + H_2O \rightarrow SO_{42-} + 2I_- + 2H_+$ 

0.300 HJ . 0.02002. 3moliz. (mol 5032 - 14 Smoliz. (mol 5032 - 14 Smoliz. (mol 5032 - 0.036 L= 36nL of 5032 sola

#### Question 3 (10 points each)

A. 1.000-g mixture of cuprous oxide, Cu<sub>2</sub>O, and cupric oxide, CuO, was quantitatively reduced to 0.839 g of metallic copper. What was the mass of CuO in the original sample?

X=g(u20 y=g(u0 2lupa=k(u+o2 2luo=2luto2 X+my: 1.000g (4:63.55 g/md (400:143.0999 (400:79.544)/2) X=1.000-mg (4:63.55 g/md (400:143.0999 (400:79.544)/2) Xg (u20 4nol cu 6255g (u = 0.8882 X g Qu 14].099 yhol 2nol Cu20 nol Lu = 0.8882 X g Qu yg (20 2nolCa 63.559Ca = 0.7989 xyg (-79.5499hol 2nolCab nolCa 0.8882x+0.7989 3: 0.839 0.8882(1.000-3) +0.74893:0.839 0.0893 y = 0.04 92 y = 0.0492 ~ 0.55 g (u 0)

B) Four trials yield the following results for the mass of CuO produced in the above reactions:

0.538 g 0.716 g 0.815 g 0.920 g

Calculate the 95% confidence interval for these results.

## Table 1: "t" Values for 95% confidence interval.

| Degrees of<br>freedom | Value of "t" |
|-----------------------|--------------|
| 1                     | 6.314        |
| 2                     | 2.920        |
| 3                     | 2.353        |
| 4                     | 2.132        |
| 5                     | 2.015        |
| 6                     | 1.943        |



For the following compounds:

- A. Draw the Lewis Structure, explicitly showing the formal charges and molecular geometry
- B. Indicate the Electron Pair Geometry
- C. Indicate the Molecular Geometry



II. (NO+) Ion

| Α.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | В.      | С.     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|
| $\begin{bmatrix} \vdots \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $ | Linear  | Linkar |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18<br>1 |        |



