SOLUTIONS

Name SID \qquad

1) Consider the reaction shown below, in which MgCl_{2} reacts with NaOH to produce $\mathrm{Mg}(\mathrm{OH})_{2}$ and NaCl .

$$
\mathrm{MgCl}_{2}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})
$$

A sample initially contains 0.02 mole of MgCl_{2} and 0.03 mole of NaOH . The reaction then proceeds until one of the reactants is completely consumed.

Identify the limiting reagent and the amount of $\mathrm{Mg}(\mathrm{OH})_{2}$ produced.$\mathrm{MgCl}_{2} ; 0.01$ mole

- $\mathrm{NaOH} ; 0.015$ mole$\mathrm{MgCl}_{2} ; 0.02$ mole
Q $\mathrm{NaOH} ; 0.02$ mole

2) The equation for the combustion of butane is shown below.

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \underline{8} \mathrm{CO}_{2}(\mathrm{~g})+10 \underline{H}_{2} \mathrm{O}(\mathrm{I})
$$

Balance the reaction by adding stoichiometric coefficients to the equation. Then calculate how many molecules of CO_{2} will be formed from the combustion of 0.0829 g of butane, and select the correct answer below.
$8.59 \times 10^{20} \mathrm{CO}_{2}$ molecules$1.16 \times 10^{25} \mathrm{CO}_{2}$ molecules$2.15 \times 10^{21} \mathrm{CO}_{2}$ molecules
3) An atom is excited from its ground state by absorbing a photon. It relaxes back to the ground state by emitting two photons, an orange photon at 600 nm and an infrared one at 1200 nm .
What is the wavelength of the absorbed photon?900 nm1800 nm1200 nm400 nm
600 nm
\qquad SID \qquad
4) A light beam with wavelength $\lambda=700 \mathrm{~nm}$ strikes a metal surface and causes emission of electrons.
If the same metal surface is struck by a light beam with wavelength $\lambda=560 \mathrm{~nm}$, the kinetic energy of the electrons emitted by the surface will begreater by a factor that depends on the metal's work functionsmaller by a factor that depends on the metal's work functionthe samesmaller by a factor of $4 / 5$greater by a factor of 5/4
5) Consider a single photon with wavelength λ, frequency v and energy E.

What is the wavelength, frequency and energy of a beam of light containing 100 of these photons?$100 \lambda, 100 v$ and 100 E
〇 $0.01 \lambda, 100 v$ and 100 E$0.01 \lambda, v$ and 100 E
8
λ, v and 100 E$0.01 \lambda, 0.01 v$ and 0.01 E
○ $100 \lambda, 100 v$ and E
\qquad
6) Ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$, is a small molecule that can link end-to-end with other ethylene molecules to form a chain. Structures are shown below for chains that result from linking n molecules of ethylene together.

$n=1$
$n=2$
large n
[The difference between single bonds $(-)$ and double bonds $(=)$ is not important here. Nor is the detailed connectivity between H and C atoms.]
i. Write a balanced reaction equation for this process.

$$
n \mathrm{C}_{2} \mathrm{H}_{4} \longrightarrow \mathrm{C}_{2 n} \mathrm{H}_{4 n}
$$

ii. What is the mass of a chain with $n=10$? Give your answer in units of $\mathrm{g} / \mathrm{mol}$.
$n=10 \Rightarrow$ molecule is $\mathrm{C}_{20} \mathrm{H}_{40}$.
mass $=20 \times 12 \frac{\mathrm{~g}}{\mathrm{~mol}}+40 \times 1 \frac{\mathrm{~g}}{\mathrm{~mol}}=280 \mathrm{~g} / \mathrm{mol}_{\text {Final Answer }}^{\text {(}}$ $280 \mathrm{~g} / \mathrm{mol}$
iii. Balance the following reaction equation for the bonding of ethylene molecules to form a chain with $n=3$.

$$
3 \mathrm{C}_{2} \mathrm{H}_{4} \rightarrow 1 \mathrm{C}_{6} \mathrm{H}_{12}
$$

\qquad

For the remaining parts of this question, consider a sample that initially contains 1 mole of $\mathrm{C}_{2} \mathrm{H}_{4}$ molecules. These molecules bond to one another in successive rounds, forming longer and longer chains at each stage, as depicted in the tree diagram below.

- In the first round, each $\mathrm{C}_{2} \mathrm{H}_{4}$ molecule bonds to another $\mathrm{C}_{2} \mathrm{H}_{4}$ molecule to form chains with $n=2$.

$$
\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{2} \mathrm{H}_{4} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8}
$$

This reaction goes to completion.

- In the second round, each $n=2$ chain bonds to another $n=2$ chain to form chains with $n=4$.

$$
\mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{C}_{4} \mathrm{H}_{8} \rightarrow \mathrm{C}_{8} \mathrm{H}_{16}
$$

This reaction goes to completion.

- Subsequent rounds similarly convert all chains of length n to chains of length $2 n$.
\qquad
iv. How many rounds of binding are required to form chains with $n=16$? How many moles of $n=16$ chains are produced?
round $1 \quad n=1 \rightarrow 2$ to produce a chain with $n=N, 2$ rounds round $2 \quad n=2 \rightarrow 4$ are needed $\Rightarrow 4$ rounds for $n=16$ round $3 \quad n=4 \rightarrow 8 \quad$ (Where $N=2^{x}$) Final Answer -
 rounds
\qquad
v. Which of the plots below correctly shows the mass of a chain molecule that is present after each round of bonding? Mark the appropriate circle.
* exponential growth!

\bigcirc

\qquad
\qquad
vi. After many rounds of bonding, only a single molecule remains. What is the mass of this one remaining molecule?
We started with 1 mol of ethylene which weighs 28 g . Mass is conserved so this is the final weight as well.
\qquad Final Answer
vii. When only a single molecule remains, how many carbon nuclei does it contain?

We started with 2 mol ' C ' nuclei in ethylene of this conserved. Thus, we will have $2 N_{A}$ 'C' nuclei.
\qquad Final Answer
viii. If this last remaining molecule were pulled completely straight, as in the picture below, how long would it be? For reference, the length of $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}-\mathrm{C}$ bonds is about 1 Å.

The distance from the first carbon nucleus to the last is about:

\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1 m
$10 \AA$	100 nm	$1 \mu \mathrm{~m}$	1 km	$10^{11} \mathrm{~km}$	
Length \sim	$10^{-10} \mathrm{~m} \times$	$6.02 \times 10^{23} \AA \sim 10^{\circ} \sim \mathrm{m} \sim 10^{11} \mathrm{~km}$			

Name \qquad SID \qquad
7) The diagram below shows the allowed energy levels of a certain molecule, which include a large number of states with energy between $E=-E_{0}$ and $E=0$. The state with highest energy is labeled $n_{\text {max }}$.

i. A transition from $n=2$ to $n=1$ is accompanied by emission of a photon with wavelength $\lambda={ }^{9} \$ 00 \mathrm{~nm}$, as shown in the energy level diagram. Using this information, calculate the value of E_{0} in units of $\mathrm{kJ} / \mathrm{mol}$.

$$
\begin{aligned}
& \Delta E=-2 E_{0}-\left(-3 E_{0}\right)=E_{0}=\frac{h \mathrm{c}}{900 \mathrm{~nm}}=\frac{6.63 \times 10^{-34} \mathrm{~J} \cdot 5 \times 3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{900 \times 10^{-9} \mathrm{~m}} \\
& \Delta E=2.21 \times 10^{-9} \mathrm{~J} \times 6 \times 10^{20} \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& 130 \mathrm{~kJ} / \mathrm{mol} \text { Final Answer }
\end{aligned}
$$

ii. What wavelength of light would be absorbed in a transition from $n=2$ to $n_{\text {max }}$?

300 nm

450 nm
750 nm
900 nm

- 1800 nm

$$
\begin{aligned}
& \Delta E_{2 \rightarrow \text { max }}=2 E_{0} \\
& \Rightarrow \lambda_{2 \rightarrow \text { max }}=\frac{900 \mathrm{~nm}}{2} \\
& \quad \text { (inversely proportional to } \\
& \text { energy) }
\end{aligned}
$$

\qquad SID \qquad
iii. For the states shown above, what transition (or transitions) involves the largest change in this molecule's energy, and by how much does its energy change? (Give answer in units of E_{0}).

$$
\begin{gathered}
n=1 \text { to } n_{\max } \text { has highest energy } \\
\text { change } \\
\Delta E=3 E_{0}
\end{gathered}
$$

iv. What is the shortest wavelength of light that can be absorbed by this molecule? All of the energy levels shown should be considered as possible initial states.
shortest λ corresponds to largest ΔE.

$$
\Delta E_{\max }=3 E_{0} \Rightarrow \lambda_{\min }=\frac{900 \mathrm{~nm}}{3}
$$

$$
300 \mathrm{~nm} \quad \text { Final Answer }
$$

Name \qquad SID \qquad
v. On the graph below, sketch the complete emission spectrum for this molecule over the range of wavelengths shown. (Transitions that emit light outside this range do not need to be considered.) Recall that the complete emission spectrum includes transitions from all possible excited states.

You may assume that excited states between $n=3$ and $n_{\text {max }}$ are so numerous that the spectrum is very smooth.

vi. Based on the spectrum you drew in part (v), describe the appearance of light emitted (not reflected) by this substance as it undergoes all of its possible transitions.

$$
\begin{gathered}
\text { It appears white as emitted } \\
\text { light covers all of the, spectrum. } \\
\text { visible }
\end{gathered}
$$

\qquad SID \qquad
8) Consider an electron with position x, in a 1-dimensional potential $V(x)$. Panels (a), (b), (c) and (d) of the figure below show 4 different wavefunctions $\psi(x)$ for this electron (solid lines), alongside the potential $V(x)$ (dashed lines).

$$
\begin{array}{|l|}
\hline V(x)-- \\
\psi(x)- \\
\hline
\end{array}
$$

(c)

i. True or false: The kinetic energy of an electron described by the wavefunctions in panels (a) and (c) is equal. Explain your answer in 1-2 sentences.

True, because they have the same curvature.
ii. True or false: The potential energy of an electron described by the wavefunctions in panels (a) and (b) is equal. Explain your answer in 1-2 sentences.
False, (a) is lower than (b) as the electron probability in (a) is maximum where $V(x)$ is
minimized.
\qquad
\qquad
iii. Which wavefunction(s) has the highest probability of finding the electron at $x \geq 0$?
(c) has the highest probability because the wavefunction is centered about a value >0.
iv. Which wavefunction(s) has the lowest total energy?
$(a) \rightarrow$ Lovers Kinetic + potential
v. Which wavefunction(s) has the lowest kinetic energy?
(a), (c) \rightarrow lowest curvature, no nodes and their width is the same
vi. If the potential is removed (setting $V(x)=0$ at all x), which wavefunction(s) has the highest kinetic energy?
(d) \rightarrow maximum \# of nodes

