Chemistry 4B, Exam II
March 9, 2020
Professor R. J. Saykally

$$
\begin{gathered}
E=m c^{2} \\
N_{t}=N_{0} \exp (-k t) \\
A=k N \\
1 \mathrm{~Gy}=1 \mathrm{~J} \mathrm{~kg}^{-1}
\end{gathered}
$$

Name $\qquad$
SID $\qquad$
TA $\qquad$

$$
\Delta E_{\text {cell }}^{0}=E_{\text {cathode }}^{0}-E_{\text {anode }}^{0}
$$

$$
\Delta E_{\text {cell }}=\Delta E_{\text {cell }}^{0}-\frac{0.0592 \mathrm{~V}}{n} \log _{10} Q
$$

$1 \mathrm{~Bq} \equiv 1$ disintegration per second

## Rules:

1. Show all work for full credit and partial credit. This includes:

Relevant equation(s), intermediate steps, substitution of values with units, unit conversions
2. Work all problems to correct \# of sig figs
3. No lecture notes or books permitted
4. No word processing calculators (including graphing calculators)
5. No cell phones
6. No smart devices (e.g., phones, watches, etc.)
7. Time: 50 minutes
8. Equations, Physical Constants and Conversion Factors, Masses of Select Elementary Particles, and Standard Reduction Potentials included

1 (a) The half-lives of ${ }^{235} \mathrm{U}$ and ${ }^{238} \mathrm{U}$ are $7.04 \times 10^{8}$ years and $4.47 \times 10^{9}$ years, respectively, and the present abundance ratio is ${ }^{238} \mathrm{U} /{ }^{235} \mathrm{U}=137.7$. It is thought that their abundance ratio was 1 at some time before our Earth and solar system were formed ( $4.5 \times 10^{9}$ years ago). Estimate how long ago the supernova occurred that produced all the uranium isotopes in equal abundance, including the two longest lived isotopes, ${ }^{238} \mathrm{U}$ and ${ }^{235} \mathrm{U}$.

$$
\begin{gathered}
N\left({ }^{235} U\right)=N_{i}\left({ }^{235} U\right) e^{-k t} \text { and } N\left({ }^{238} U\right)=N_{i}\left({ }^{238} U\right) e^{-k t} \\
\frac{137.7}{1}=\frac{N_{i}\left({ }^{238} U\right) e^{-k_{238} t}}{N_{i}\left({ }^{235} U\right) e^{-k_{235} t}}=\frac{e^{-k_{238} t}}{e^{-k_{235} t}} \\
\ln (137.7)=k_{235} t-k_{238} t=t\left(k_{235}-k_{238}\right) \\
k=\frac{\ln (2)}{t_{1 / 2}} \\
\ln (137.7)=t\left(\frac{\ln (2)}{7.04 \times 10^{8} y r}-\frac{\ln (2)}{4.47 \times 10^{9}}\right) \\
t=\frac{\ln (137.7)}{\left(\frac{\ln (2)}{7.04 \times 10^{8} y r}-\frac{\ln (2)}{4.47 \times 10^{9} y r}\right)}=5.93 \times 10^{9} y r
\end{gathered}
$$

(b) Using the above result and the accepted age of the Earth ( $4.5 \times 10^{9} \mathrm{yr}$ ), calculate the ${ }^{238} \mathrm{U} /{ }^{235} \mathrm{U}$ ratio at the time Earth was formed.

$$
\begin{gathered}
\frac{N\left({ }^{235} U\right)}{N_{i}\left({ }^{235} U\right)}=e^{-k_{235} t} \text { and } \frac{N\left({ }^{238} U\right)}{N_{i}\left({ }^{(238} U\right)}=e^{-k_{238} t} \\
\frac{N\left({ }^{238} U\right)}{N\left({ }^{235} U\right)}=\frac{e^{-k_{238} t}}{e^{-k_{235} t}}=e^{t\left(k_{235}-k_{238}\right)} \\
t=5.93 \times 10^{9} y r-4.5 x 10^{9} y r=1.43 \times 10^{9} y r \\
\ln \left(\frac{N\left({ }^{238} U\right)}{N\left({ }^{235} U\right)}\right)=\left(1.43 \times 10^{9} y r\right) *\left(\frac{\ln (2)}{7.04 \times 10^{8} y r s}-\frac{\ln (2)}{4.47 x 10^{9} y r s}\right) \\
\frac{N\left({ }^{238} U\right)}{N\left({ }^{235} U\right)}=3.3
\end{gathered}
$$

2 (a) Calculate the amount of energy released, in kilojoules per gram of Uranium, in the fission reaction:

$$
{ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} n \rightarrow{ }_{36}^{94} \mathrm{Kr}+{ }_{56}^{130} \mathrm{Ba}+3{ }_{0}^{1} n
$$

Use the atomic masses in Table 19.1. The atomic mass of ${ }^{94} \mathrm{Kr}$ is 93.919 u , that of ${ }^{139} \mathrm{Ba}$ is 138.909 u , and that of ${ }^{235} \mathrm{U}$ is 235.044 u .

$$
\begin{gathered}
\Delta E=\Delta m c^{2} \\
\Delta m=m\left({ }_{36}^{94} K r\right)+m\left({ }_{56}^{130} B a\right)+3 * m\left({ }_{0}^{1} n\right)-m\left({ }_{92}^{235} 92\right)-m\left({ }_{0}^{1} n\right)
\end{gathered}
$$

$$
\Delta m=93.919 u+138.909 u+3 *(1.008665) u-235.044 u-1.008665 u=-0.19867 u
$$

$$
\Delta E=-0.19867 u *\left(2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} * \frac{1.6605 \times 10^{-27} \mathrm{~kg}}{u}=-2.964 \times 10^{-11} \mathrm{~J}
$$

$$
\Delta E=-2.964 \times 10^{-11} J *\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right) * 6.023 \times 10^{23} \mathrm{~mol}^{-1}=-1.784 \times 10^{10} \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$$
\Delta E=-1.784 \times 10^{10} \mathrm{~kJ} \mathrm{~mol}^{-1} *\left(\frac{1 \mathrm{~mol}^{235} \mathrm{U}}{235.044 \mathrm{~g}^{235} \mathrm{U}}\right)=-7.592 \times 10^{7} \mathrm{~kJ} \mathrm{~g}^{-1}
$$

Energy released $=+7.592 \times 10^{7} \mathrm{~kJ} \mathrm{~g}^{-1}$
(b) Using Table 19.1. Calculate the amount of energy released, in kilojoules per gram of deuterium $\left({ }^{2} \mathrm{H}\right)$, for the fusion reaction:

$$
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}
$$

$$
\begin{gathered}
\Delta m=m\left({ }_{2}^{4} \mathrm{He}\right)-2 * m\left({ }_{1}^{2} \mathrm{H}\right)=4.00260325-2(2.014101778)=-0.0256003 \mathrm{u} \\
\Delta E=-0.0256003 \mathrm{u} *\left(2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} * \frac{1.6605 \times 10^{-27} \mathrm{~kg}}{u}=-3.28074 \times 10^{-12} \mathrm{~J} \\
\Delta E=-3.28074 \times 10^{-12} \mathrm{~J} *\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right) * 6.023 \times 10^{23} \frac{\text { atoms }}{\mathrm{mol}^{-1}} * \frac{1}{2 \mathrm{atoms}}=-1.15004 \times 10^{9} \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\Delta E=-1.15004 \times 10^{9} \mathrm{~kJ} \mathrm{~mol}^{-1} *\left(\frac{1 \mathrm{~mol}_{1}^{2} \mathrm{H}}{2.01410 \mathrm{~g}{ }_{1}^{2} \mathrm{H}}\right)=-5.712 \times 10^{8} \mathrm{~kJ} \mathrm{~g}^{-1}
\end{gathered}
$$

Energy released $=+5.712 \times 10^{8} \mathrm{~kJ} \mathrm{~g}^{-1}$
3) (a) Write the equations describing the p-p fusion cycle that provides $90 \%$ of the sun's energy, with appropriate multipliers to give the correct overall fusion reaction.

$$
\begin{gathered}
2 *\left[{ }^{1} \mathrm{H}+{ }^{1} \mathrm{H} \rightarrow{ }^{2} \mathrm{H}+{ }_{1}^{0} e^{+}+v_{e}\right] \\
2 *\left[{ }^{2} \mathrm{H}+{ }^{1} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\gamma\right] \\
\underline{{ }^{3} \mathrm{He}+{ }^{3} \mathrm{He} \rightarrow{ }^{4} \mathrm{He}+2{ }^{1} \mathrm{H}} \\
\text { Net: } 4{ }^{1} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+2{ }_{1}^{0} e^{+}+2 v_{e}+\gamma
\end{gathered}
$$

(b) Compute $\Delta \mathrm{m}$ and $\Delta \mathrm{E}$ for the overall "hydrogen burning" fusion cycle.

$$
\begin{gathered}
\Delta m=m\left({ }^{4} \mathrm{He}\right)+2 * m\left({ }_{1}^{0} e^{+}\right)-4 * m\left({ }^{1} \mathrm{H}\right)=4.002603+2(0.00054857)-4(1.007825) \\
\Delta m=-0.02759 \mathrm{u} \\
\Delta E=-0.02759 \mathrm{u} *\left(2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} * \frac{1.6605 \times 10^{-27} \mathrm{~kg}}{\mathrm{u}}=-4.119 \times 10^{-12} \mathrm{~J} \\
\Delta E=-4.119 \times 10^{-12} \mathrm{~J} *\left(\frac{1 \mathrm{~kJ}}{1000 \mathrm{~J}}\right) * 6.023 \times 10^{23} \frac{\mathrm{atoms}}{\mathrm{~mol}^{-1}} * \frac{1}{4 \mathrm{atoms}}=-6.1993 \times 10^{8} \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\Delta E=-6.1993 \times 10^{8} \mathrm{~kJ} \mathrm{~mol}^{-1} *\left(\frac{1 \mathrm{~mol}^{1} \mathrm{H}}{1.007825 \mathrm{~g}{ }_{1}^{1} \mathrm{H}}\right)=-6.151 \times 10^{8} \mathrm{~kJ} \mathrm{~g}^{-11} \mathrm{H} \\
\Delta E=-6.151 \times 10^{8} \mathrm{~kJ} \mathrm{~g}^{-1}
\end{gathered}
$$

(c) Our sun radiates $3.9 \times 10^{23}$ Watts of power. How many protons must be "burned" each second to supply this energy

$$
\frac{3.9 \times 10^{23} \frac{\mathrm{~J}}{\mathrm{~S}}}{\frac{4.119 \times 10^{-12} \mathrm{~J}}{4 \text { atoms }}}=3.8 \times 10^{35} \frac{\text { protons }}{\text { second }}
$$

or

$$
\begin{gathered}
3.9 \times 10^{23} \mathrm{~W}=3.9 \times 10^{23} \frac{\mathrm{~J}}{\mathrm{~s}}=3.9 \times 10^{20} \frac{\mathrm{~kJ}}{\mathrm{~s}} \\
\frac{3.9 \times 10^{20} \frac{\mathrm{~kJ}}{\mathrm{~s}}}{6.151 \times 10^{8} \frac{\mathrm{~kJ}}{\mathrm{~g}}}=6.3404 \times 10^{11} \frac{\mathrm{~g}^{1} \mathrm{H}}{\mathrm{~s}} \\
6.3404 \times 10^{11} \frac{\mathrm{~g}^{1} \mathrm{H}}{\mathrm{~s}} * \frac{1 \mathrm{~mol}^{1} \mathrm{H}}{1.0078250 \mathrm{~g}} * \frac{6.023 \times 10^{23} \mathrm{atoms}}{\mathrm{~mol}} \\
=3.8 \times 10^{35} \frac{\text { protons }}{\text { second }}
\end{gathered}
$$

4) A galvanic cell is constructed in which the overall reaction is

$$
\mathrm{Br}_{2}(l)+\mathrm{H}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{Br}^{-}(a q)+2 \mathrm{H}_{3} \mathrm{O}^{+}(a q)
$$

(a) Calculate $\Delta \mathrm{E}^{\circ}$ for this cell.

$$
\begin{gathered}
\mathrm{Br}_{2}(l)+2 e^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq}) \quad E^{0}=1.065 \mathrm{~V} \\
\mathrm{H}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \quad E^{0}=0.000 \\
\Delta E_{\text {cell }}^{0}=E_{\text {cathode }}^{0}-E_{\text {anode }}^{0}=1.065-0.00=1.065 \mathrm{~V}
\end{gathered}
$$

(b) Silver ions are added until AgBr precipitates at the cathode and $\left[\mathrm{Ag}^{+}\right]$reaches 0.060 M . The cell potential is then measured to be 1.710 V at $\mathrm{pH}=0$ and $\mathrm{P}_{\mathrm{H} 2}=1.0 \mathrm{~atm}$. Calculate [ $\mathrm{Br}^{-}$] under these conditions.

$$
\begin{gathered}
\Delta E_{\text {cell }}=\Delta E_{\text {cell }}^{0}-\frac{0.0592 \mathrm{~V}}{n} \log _{10} Q \\
1.710 \mathrm{~V}=1.065 \mathrm{~V}-\frac{0.0592 \mathrm{~V}}{2} \log _{10} \frac{\left[\mathrm{Br}^{-}\right]^{2} *\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{P_{\mathrm{H}_{2}}} \\
-21.7905=\log _{10}\left[\mathrm{Br}^{-}\right]^{2} \\
{\left[\mathrm{Br}^{-}\right]=\sqrt{10^{-21.7905}}=1.3 \times 10^{-11} \mathrm{M}}
\end{gathered}
$$

(c) Calculate the solubility product constant $K_{\text {sp }}$ for AgBr .

$$
\begin{gathered}
A g B r(s) \leftrightarrow A g^{+}(a q)+B r^{-}(a q) \\
K_{s p}=\left[A g^{+}\right]\left[B r^{-}\right] \\
K_{s p}=[0.060]\left[1.27 \times 10^{-11}\right]=7.6 \times 10^{-13}
\end{gathered}
$$

5) A modern size AA alkaline dry cell battery weighs 23.0 grams and produces 1.50 volts with the following half-reactions:

$$
\text { Anode: } \mathrm{Zn}+2 \mathrm{OH}^{-} \rightarrow \mathrm{ZnO}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}
$$

$$
\text { Cathode: } 2 \mathrm{MnO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 e^{-} \rightarrow \mathrm{Mn}_{2} \mathrm{O}_{3}+2 \mathrm{OH}^{-}
$$

(a) Assuming that $70.0 \%$ of its mass consists of the cell reagents in stoichiometric amounts, how much charge can this battery deliver?

$$
\begin{gathered}
23.0 \mathrm{~g} * 0.700=16.1 \mathrm{~g} \\
M(\text { cell })=M(\mathrm{Zn})++2 M\left(\mathrm{MnO}_{2}\right)=65.38++2(86.936)=239.25 \frac{\mathrm{~g}}{\mathrm{~mol}} \\
\frac{16.1 \mathrm{~g}}{239.25 \frac{\mathrm{~g}}{\mathrm{~mol}}}=0.06729 \mathrm{~mol} \mathrm{Zn} * \frac{2 \mathrm{~mol} e^{-}}{1 \mathrm{~mol} \mathrm{Zn}}=0.1345 \mathrm{~mol} \mathrm{e} \\
Q=n F=\left(0.1345 \mathrm{~mol} \mathrm{e}^{-}\right)\left(96485 \frac{\mathrm{C}}{\mathrm{~mol} \mathrm{e}^{-}}\right)=1.30 \times 10^{4} \mathrm{C}
\end{gathered}
$$

(b) How much work can it do?

$$
\begin{gathered}
w=-n F \Delta E_{\text {cell }} \\
w=\left(-1.30 \times 10^{4} \mathrm{C}\right) *(1.50 \mathrm{~V})=-1.95 \times 10^{4} \mathrm{~J}=-19.5 \mathrm{~kJ}
\end{gathered}
$$

(c) If a steady current of 0.050 A is drawn from it, how long will it last?

$$
\begin{gathered}
0.050 \mathrm{~A}=0.050 \frac{C}{S} \\
\frac{1.30 \times 10^{4} \mathrm{C}}{0.050 \frac{C}{S}}=2.6 \times 10^{5} \mathrm{~S}
\end{gathered}
$$

