Chemistry 4B Exam 1

February 14, 2020
Professor Saykally
Equations:

$$
\begin{array}{ll}
c=c_{0} \mathrm{e}^{-k t} & \frac{d[\mathrm{P}]}{d t}=\frac{k_{2}[\mathrm{E}]_{0}[\mathrm{~S}]}{[\mathrm{S}]+K_{\mathrm{m}}} \\
\frac{1}{c}=\frac{1}{c_{0}}+2 k t & A=2 d^{2} N_{A} \sqrt{\frac{\pi R T}{M} P} \\
k=A \mathrm{e}^{-E_{a} / R T} &
\end{array}
$$

Name:
SID:
GSI:

Rules:

- Work all problems to $\mathbf{3}$ significant figures
- No lecture notes or books permitted
- No word processing, graphing, or programmable calculators
- Time: 50 minutes
- Total: 100 points
- SHOW ALL WORK IN BOXES PROVIDED TO RECEIVE CREDIT
- Answers with no work shown will receive no credit
- Periodic Table, Tables of Physical Constants, Equations, and Conversion Factors included
(1) (20 points) In lecture we studied the decomposition reaction of $\mathrm{N}_{2} \mathrm{O}_{5}$:
(a) What is the rate constant, k , for the first-order decomposition of $\mathrm{N}_{2} \mathrm{O} 5(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$ if the halflife of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ at that temperature is $4.03 \times 10_{4} \mathrm{~s}$? (10 points)

$$
\begin{gathered}
c=c_{0} e^{-k t} \\
\frac{c}{c_{0}}=e^{-k t} \\
\ln \left(\frac{0.5 c_{0}}{c_{0}}\right)=-k t \\
\ln (2)=k t \rightarrow t_{1 / 2}=\frac{\ln (2)}{k} \\
k=\frac{\ln (2)}{t_{1 / 2}}=\frac{0.6931}{4.03 \times 10^{4} s}=1.72 \times 10^{-5} s^{-1}
\end{gathered}
$$

(b) What percentage of $\mathrm{N}_{2} \mathrm{O}_{5}$ molecules will not have reacted after 1 day? (10 points)

$$
\begin{gathered}
c=c_{0} e^{-k t} \\
\frac{c}{c_{0}}=e^{-k t} \\
\frac{c}{c_{0}}=e^{-\left(1.72 \times 10^{-5} s^{-1}\right) *\left(24 h r s * \frac{3600 s}{h r}\right)} \\
\frac{c}{c_{0}}=0.226
\end{gathered}
$$

22.6% of molecules have not reacted after 1 day
\qquad
(2) (20 points) In a study of the reaction of pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ with methyl iodide $\left(\mathrm{CH}_{3} \mathrm{I}\right)$ in a benzene solution, the following set of initial reaction rates was measured at $25^{\circ} \mathrm{C}$ for different initial concentrations of the two reactants:

Reaction	$\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathbf{N}\right]$ $(\mathbf{m o l ~ L - 1})$	$\left[\mathrm{CH}_{3} \mathbf{I}\right]$ $($ mol L-1)	Rate $($ mol L-1 S-1 $)$
1	1.00×10^{-4}	1.00×10^{-4}	7.50×10^{-7}
2	2.00×10^{-4}	2.00×10^{-4}	3.00×10^{-6}
3	2.00×10^{-4}	4.00×10^{-4}	6.00×10^{-6}

a) Write the differential rate expression for this reaction. Show all work. (10 points)

$$
\begin{gathered}
\text { Rate }=k\left[C_{5} H_{5} N\right]^{x}\left[\mathrm{CH}_{3} I\right]^{y} \\
\frac{\text { Rate } 3}{\text { Rate } 2}=\frac{k\left[C_{5} H_{5} N\right]^{x} * 2\left[\mathrm{CH}_{3} I\right]^{y}}{k\left[\mathrm{C}_{5} H_{5} N\right]^{x}\left[\mathrm{CH}_{3} I\right]^{y}} \\
2=\frac{2 *\left[\mathrm{CH}_{3} I\right]^{y}}{\left[C H_{3} I\right]^{y}}=2^{y} \rightarrow y=1 \\
\frac{\text { Rate } 1}{\text { Rate } 2}=\frac{1}{4}=\frac{k\left[C_{5} H_{5} N\right]^{x}\left[C H_{3} I\right]^{1}}{k * 2\left[C_{5} H_{5} N\right]^{x} * 2\left[C H_{3} I\right]^{1}}=\left(\frac{1}{2}\right)^{x}\left(\frac{1}{2}\right) \rightarrow x=1 \\
\text { Rate }=\mathrm{k}\left[\mathrm{C}_{5} \boldsymbol{H}_{5} \mathrm{~N}\right]\left[\mathrm{CH}_{3} I\right]
\end{gathered}
$$

b)Calculate the rate constant and give its units. (10 points)

$$
\begin{gathered}
\text { Rate }=\mathrm{k}\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right]\left[\mathrm{CH}_{3} \mathrm{I}\right] \\
7.50 \times 10^{-7} \frac{\mathrm{~mol}}{\mathrm{~L} * \mathrm{~s}^{-1}}=k *\left[1.00 * 10^{-4} \frac{\mathrm{~mol}}{\mathrm{~L}}\right]\left[1.00 * 10^{-4} \frac{\mathrm{~mol}}{\mathrm{~L}}\right] \\
k=\frac{7.50 \times 10^{-7} \frac{\mathrm{~mol}}{\mathrm{~L}^{-1}}}{\left[1.00 * 10^{-4} \frac{\mathrm{~mol}}{\mathrm{~L}}\right]\left[1.00 * 10^{-4} \frac{\mathrm{~mol}}{\mathrm{~L}}\right]} \\
k=75.0 \frac{\mathrm{~L}}{\mathrm{~mol} * S}
\end{gathered}
$$

(3) ($\mathbf{1 0}$ points) At $25^{\circ} \mathrm{C}$ in CCl_{4} solvent, the reaction

$$
I+I \rightarrow I_{2}
$$

is second-order in concentration of the iodine atoms. The rate constant k has been measured as $8.2 \times 10^{9} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$. Suppose the initial concentration of I atoms is $1.00 \times 10^{-4} \mathrm{M}$. Calculate their concentration after $2.0 \times 10^{-6} \mathrm{~s}$. (10 points)

$$
\frac{1}{c}=\frac{1}{c_{0}}+2 k t
$$

$$
\begin{gathered}
\frac{1}{c}=\frac{1}{\left(1.00 \times 10^{-4} \mathrm{M}\right)}+\left(2 *\left(8.20 \times 10^{9} \frac{\mathrm{~L}}{\mathrm{mols} \mathrm{~s}}\right) *\left(2.0 \times 10^{-6} \mathrm{~s}\right)\right) \\
\frac{1}{c}=1.0 \times 10^{4} \frac{L}{\mathrm{~mol}}+3.28 \times 10^{4} \frac{\mathrm{~L}}{\mathrm{~mol}}=4.28 \times 10^{4} \frac{\mathrm{~L}}{\mathrm{~mol}} \\
c=\frac{1}{4.28 \times 10^{4} \frac{\mathrm{~L}}{\mathrm{~mol}}}=2.3 \times 10^{-5} \mathrm{M}
\end{gathered}
$$

(4) ($\mathbf{2 0}$ points) The activation energy for the isomerization reaction of $\mathrm{CH}_{3} \mathrm{CN}$

$$
\mathrm{CH}_{3} \mathrm{NC} \rightarrow \mathrm{CH}_{3} \mathrm{CN}
$$

is $161 \mathrm{~kJ} \mathrm{~mol}-1$; the reaction obeys first order kinetics, and the rate constant at 600 K is $0.41 \mathrm{~s}-1$.
(a) Calculate the Arrhenius factor A for this reaction (10 points)

$$
\begin{gathered}
k=A e^{\frac{-E_{a}}{R T}} \\
A=\frac{k}{e^{\frac{-E_{a}}{R T}}} \\
A=\frac{0.41 \mathrm{~s}^{-1}}{\exp \left(-1.61 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1} /\left(8.3145 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(600 \mathrm{~K})\right)} \\
A=4.3 \times 10^{13} \mathrm{~s}^{-1}
\end{gathered}
$$

(b) Calculate the rate constant for this reaction at 1000 K. (10 points)

$$
\begin{gathered}
k=A e^{\frac{-E_{a}}{R T}} \\
k=\left(4.3 \times 10^{13} \mathrm{~s}^{-1}\right) * \exp \left(-1.61 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1} /\left(8.3145 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(1000 \mathrm{~K})\right) \\
k=1.7 \times 10^{5} \mathrm{~s}^{-1}
\end{gathered}
$$

(5) ($\mathbf{1 5}$ points) The mechanism for decomposition of $\mathrm{NO}_{2} \mathrm{Cl}$ is:

$$
\begin{gathered}
\mathrm{NO}_{2} \mathrm{Cl} \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons} \mathrm{NO}_{2}+\mathrm{Cl}} \\
\stackrel{k_{2}}{\rightarrow} \mathrm{NO}_{2}+\mathrm{Cl}_{2}
\end{gathered}
$$

By making a steady state approximation for [Cl], express the rate of appearance of Cl_{2} in terms of the concentrations of $\mathrm{NO}_{2} \mathrm{Cl}$ and NO_{2}.

$$
\begin{aligned}
& \text { Rate }=\frac{d\left[\mathrm{Cl}_{2}\right]}{d t}=k_{2}\left[\mathrm{NO}_{2} \mathrm{Cl}\right][\mathrm{Cl}] \\
& \frac{d[\mathrm{Cl}]}{d t}=k_{1}\left[\mathrm{NO}_{2} \mathrm{Cl}\right]-k_{-1}\left[\mathrm{NO}_{2}\right][\mathrm{Cl}]-k_{2}\left[\mathrm{NO}_{2} \mathrm{Cl}\right][\mathrm{Cl}]=0 \\
& k_{-1}\left[\mathrm{NO}_{2}\right][\mathrm{Cl}]+k_{2}\left[\mathrm{NO}_{2} \mathrm{Cl}\right][\mathrm{Cl}]=k_{1}\left[\mathrm{NO}_{2} \mathrm{Cl}\right] \\
& {[\mathrm{Cl}]_{s s}\left(k_{-1}\left[\mathrm{NO}_{2}\right]+k_{2}\left[\mathrm{NO}_{2} \mathrm{Cl}\right]\right)=k_{1}\left[\mathrm{NO}_{2} \mathrm{Cl}\right]} \\
& {[\mathrm{Cl}]_{s s}=\frac{k_{1}\left[\mathrm{NO}_{2} \mathrm{Cl}\right]}{k_{-1}\left[\mathrm{NO}_{2}\right]+k_{2}\left[\mathrm{NO}_{2} \mathrm{Cl}\right]}} \\
& \text { Rate }=\frac{d\left[\mathrm{Cl}_{2}\right]}{d t}=k_{2}\left[\mathrm{NO}_{2} \mathrm{Cl}\right][\mathrm{Cl}]_{S s} \\
& \text { Rate }=\frac{d\left[\mathrm{Cl}_{2}\right]}{d t}=\frac{k_{1} k_{2}\left[\mathrm{NO}_{2} \mathrm{Cl}\right]^{2}}{k_{-1}\left[\mathrm{NO}_{2}\right]+k_{2}\left[\mathrm{NO}_{2} \mathrm{Cl}\right]}
\end{aligned}
$$

(6) ($\mathbf{1 5}$ points) The enzyme lysozyme kills certain bacteria by attacking a sugar called N acetylglucosamine (NAG) in their cell walls. At an enzyme concentration of $2.0 \times 10-6 \mathrm{M}$, the maximum rate for substrate (NAG) reaction, found at high substrate concentration, is $1 \times 10-6$ $\mathrm{mol} \mathrm{L}_{-1} \mathrm{~s}-1$. The rate is reduced by a factor of 2 when the substrate concentration is reduced to 6.0 x 10-6 M. Determine the Michaelis-Menten constant K_{m} as well as k2 for lysozyme.

$$
\frac{d[P]}{d t}=\frac{k_{2}[E]_{0}[S]}{k_{M}+[S]}
$$

At high substrate concentration [S] >> k_{M}, so we can write:

$$
\begin{gathered}
\text { Max Rate }=\frac{d[P]}{d t}=k_{2}[E]_{0} \\
k_{2}=\frac{\text { Max Rate }}{[E]_{0}}=\frac{1 \times 10^{-6} \mathrm{~mol} L^{-1} \mathrm{~s}^{-1}}{2.0 \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}}=0.5 \mathrm{~s}^{-1} \\
k_{2}=0.5 \mathrm{~s}^{-1}
\end{gathered}
$$

Now, we take a ratio of our rate expressions to solve for k_{M} :

$$
\begin{gathered}
\frac{\text { Rate }}{\text { Max Rate }}=\frac{\frac{k_{2}[E]_{0}[S]}{k_{M}+[S]}}{k_{2}[E]_{0}}=\frac{[S]}{k_{M}+[S]} \\
\frac{1}{2}=\frac{\left[6.0 \times 10^{-6} M\right]}{k_{M}+\left[6.0 \times 10^{-6} M\right]} \\
k_{M}=2\left[6.0 \times 10^{-6} M\right]-\left[6.0 \times 10^{-6} M\right] \\
k_{M}=6.0 \times 10^{-6} M
\end{gathered}
$$

