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Imagine an electron trapped in a potential, something like a box. In this particular system, the

lowest two energy states are much lower in energy than the others, and so, to a very good approx-

imation, we can take the system’s state space to be two-dimensional. Under this approximation,

we can use the orthonormal Hamiltonian eigenstates |�1i and |�2i as a basis for the state space.

We’ve learned that the energy eigenvalues for these states are E1 = 0 and E2 = 4.

In addition to this information about the energy, we have discovered that, in this two-dimensional

state space, the vectors i |�1i + 2 |�2i and 2 |�1i + i |�2i are eigenvectors of the position operator,

with eigenvalues �1 and 1, respectively.

1) (10 points): Which of the following two vectors is not a valid system state vector? Explain.

|ui = 1p
2
|�2i �

ip
2
|�1i |vi = |�1i+ i |�2i

From the first postulate, a valid system state vector is normalized. From the problem statement

we know that the Hamiltonian eigenstates |�1i and |�2i are orthonormal. Therefore h�1| �1i =

h�2| �2i = 1 and h�1| �2i = h�2| �1i = 0.
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hv| vi = (h�1|� i h�2|) (|�1i+ i |�2i)
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Therefore |vi is not a valid system state vector because it is not normalized, while |ui is.
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2) (15 points) Show that it is not possible to know both the energy and position of the electron

in this system at the same time. Hint: knowing the form of the potential is not necessary here.

From the problem statement we know that energy and position have di↵erent eigenstates. The

Hamiltonian, which is the total energy operator, eigenstates are |�1i and |�2i while the position

eigenstates are superpositions of |�1i and |�2i. Therefore we can’t know both the energy and the

position of the electron.

Similar arguments can be made using the commutator [Ĥ, x̂]. See the week 3 discussion notes

for evaluation of this commutator with the relevant Hamiltonian.

3) (15 points) Imagine preparing the electron in the position eigenstate with position -1 and then

measuring its energy. If we repeated this process a large number of times, what would the average

of these energy measurements be?

Because we are preparing the position of the electron before each measurement, the state we

must consider is the position eigenstate with position -1. For use in an expectation value, this

eigenstate must first be normalized.
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=
1p
5
(�i h�1|+ 2 h�2|)Ĥ
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4) (25 points) if at time t = 0 we measure the electron’s position and observe the value -1, what

is the probability of observing a position value of 1 in a second measurement made at t = ⇡/8? For

simplicity, you may set ~ = 1.

At t = 0 our initial state is

| (0)i = |x�1i =
1p
5
(i |�1i+ 2 |�2i)

from the state collapse postulate. Then using the time-dependent Schrodinger equation we can

express the time-dependence of our initial state as
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5
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Now consider how the probability of observing a position value of 1 changes with time.
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5) (20 points) If the momentum operator’s eigenvalues are 3 and 4, prove that the two corre-

sponding momentum eigenvectors must be orthogonal.

Based on the problem statement we can write p̂ |p3i = 3 |p3i and p̂ |p4i = 4 |p4i. Since the

momentum operator is Hermitian, p̂
†
= p̂. Therefore we can write:

hp3| p̂ |p4i = hp3| p̂† |p4i
0 = hp3| p̂† |p4i � hp3| p̂ |p4i

=

⇣
hp3| p̂†

⌘
|p4i � hp3| (p̂ |p4i)

= (3
⇤ hp3|) |p4i � hp3| (4 |p4i)

= 3 hp3| p4i � 4 hp3| p4i
= (3� 4) hp3| p4i
= �hp3| p4i

This expression only holds if hp3| p4i = 0, which is the orthogonality condition for the momentum

eigenvectors |p3i and |p4i.

6) (15 points) Briefly explain why, in the double slit experiment, the interference pattern goes

away when you measure which slit the electron passes through. A couple sentences is enough.

The interference pattern measured at the detector of the double slit experiment arises from

the electron’s wave function containing two components in superposition. These two pieces pass

through the two di↵erent slits and then interfere with each other (much as two water waves would

in a pool). When you make a measurement at the slits you learn that the electron passes through

one slit or the other, and the the collapse postulate causes the wave function to become just one

of the two original pieces (whichever corresponds to what you learned in the measurement). Now,

with just one component of the wave function remaining, the interference e↵ect no longer occurs.


