EXAMINATION 1

 Chemistry 3AName: \qquad Key
Print first name before second! Use capital letters!

SID \#:
Make sure the number is correct!

GSI (if you are taking Chem 3AL): \qquad
Peter Vollhardt
February 27, 2020

Please provide the following information if applicable.

Making up an I Grade
If you are, please indicate the semester during which you took previous Chem 3A and the instructor:

Auditor \qquad

Please write the answer you wish to be graded in the boxed spaces provided.
Do scratch work on the back of the pages. This test should have 17 numbered pages. Check to make sure that you have received a complete exam. A good piece of advice: Read carefully over the questions (at least twice); make sure that you understand exactly what is being asked; avoid sloppy structures or phrases. It is better to be pedantic in accuracy now than sorry later! Good Luck!
I. [36 Points] Name or draw, as appropriate, the following molecules according to the IUPAC rules. Indicate stereochemistry where necessary (such as cis, trans, R, S, meso, hashed/wedged lines, etc.)
a.

(No stereochemistry)

> 6-(1-Bromo-2-iodopropyl)-3,7-dimethyldecane
b.
(2S,5R)-2-Chloro-1,1,5-trimethylcyclooctane
(Complete the stencil in the box)

C.

(2S,3S)-2,3-Dibromo-1-chloro-2-methylpentane
(Name this enantiomer)
d.
(1R,2R)-1-bromo-2-cyclobutyl-1-ethylcyclohexane
(Complete the stencil in the box)

e.

cis-1,4-Bis(2,2-dibromoethyl)cyclohexane

f.
(1R,2S,4R)-1-Bromo-1,4-dicyclopentyl-2-methylcyclohexane
(Complete the stencil in the box)

II. [30 Points]

TABLE 1-1 Partial Periodic Table

Period						Halogens	Noble gases
First	H^{1}						
Second	$\mathrm{Li}^{2,1}$	$\mathrm{Be}^{2,2}$	$\mathrm{~B}^{2,3}$	$\mathrm{C}^{2,4}$	$\mathrm{~N}^{2,5}$	$\mathrm{O}^{2,6}$	$\mathrm{~F}^{2,7}$
Third	$\mathrm{Na}^{2,8,1}$	$\mathrm{Mg}^{2,8,2}$	$\mathrm{Al}^{2,8,3}$	$\mathrm{Si}^{2,8,4}$	$\mathrm{P}^{2,8,5}$	$\mathrm{~S}^{2,8,6}$	$\mathrm{Cl}^{2,8,7}$
Fourth	$\mathrm{K}^{2,8,8,1}$				$\mathrm{Br}^{2,8,18,7}$	$\mathrm{Ne}^{2,8}$	
Fifth					$\mathrm{Ar}^{2,8,8}$		
Note: The superscripts indicate the number of electrons in each principal shell of the atom.		$\mathrm{Kr}^{2,8,18,8}$					

Pauling Electronegativities

Write the Lewis octet structure for each of the following two molecules (a. and b.). Remember to assign charges, if any, to atoms! Do not forget to draw any lone electron pairs!
a.

$$
\ddot{s}=\mathrm{s}=\left.\stackrel{\mathrm{s}}{2+}\right|^{2+}
$$

What is the geometry of $S_{3}{ }^{2+}$? Place an " x " mark into the box next to your answer.
Linear

Bent

b.

c. The following structure has two octet resonance forms. Circle the best one.

d. For $\left.\right|^{-}: \ddot{O}-\ddot{N}=\mathrm{C}=\ddot{\mathrm{Q}} \longleftrightarrow \ddot{\mathrm{O}}=\stackrel{+}{\mathrm{N}}=\stackrel{\ddot{\mathrm{C}}}{\mathrm{C}}-\left.\ddot{\mathrm{Q}^{-}}\right|^{-}$, there are three additional octet resonance
forms. Circle the worst one among the new forms. Post exam fix: there is another resonance form, which is worse than that in the answer (see below). Full credit was given for either one.

e. The protonation of ammonia, NH_{3}, gives ammonium ion $\mathrm{NH}_{4}{ }^{+}$.

New bond

In the respective boxes,

1. draw the overlapping orbitals that make up the new $\mathrm{N}-\mathrm{H}$ bond.
2. compose the energy splitting diagram depicting the protonation of NH_{3}, starting with the proton orbital energy level on the left side.

III. [20 Points]

Table 2.2 Relative Acidities of Common Compounds ($25^{\circ} \mathrm{C}$)

Note: $K_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right] /[\mathrm{HA}] \mathrm{mol} \mathrm{L}^{-1}$.
${ }^{a}$ First dissociation equilibrium

Using the data in the Table above, circle "left" or "right" to indicate the position of the following acid-base equilibria and give the approximate equilibrium constants (namely in the form of 10^{x}) in the respective boxes provided.
a.

$K \approx 10^{29.7}$
b.
$\mathrm{H}_{3} \mathrm{C}-\mathrm{S}^{:^{-}}+\mathrm{H}_{3} \mathrm{C}-\mathrm{O}-\mathrm{H} \stackrel{\rightleftharpoons}{\rightleftharpoons} \mathrm{H}_{3} \mathrm{C}-\mathrm{S}-\mathrm{H}+\mathrm{H}_{3} \mathrm{C}-\mathrm{O}$:

$$
\begin{aligned}
& \text { Equilibrium lies to the: (left) } \\
& \text { right } \\
& K \approx 10^{-5.5}
\end{aligned}
$$

IV. [36 Points] Consider the two diastereomers of 2,3,4,5-tetramethylhexane, $\mathbf{1}$ and 2, shown below.

1

a. One of them has a meso structure. Circle which one.
b. Draw the Newman projection A of 1 along the view depicted by the skull below by completing the Newman stencil in the box provided.

c. Draw the Newman projections B and C arising from the clockwise rotation of the back carbon by successive 120°.

d. Which one of these staggered rotamers would you consider to be the most hindered and therefore of highest energy? Circle your answer below.
A
B
(C)
e. Draw the Newman projection \mathbf{D} of $\mathbf{2}$ along the view depicted by the skull below by completing the Newman stencil in the box provided.

f. Draw the Newman projections E and F arising from the clockwise rotation of the back carbon by successive 120°.

g. Which one of these staggered rotamers would you consider to be the least hindered and therefore of lowest energy? Circle your answer below.
(D)
E
F

V. [30 Points]

Table 3.1 Bond-Dissociation Energies of Various A-B Bonds in the Gas Phase [DH° in $\mathrm{kcal} \mathrm{mol}^{-1}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$]

A researcher attempted the radical bromination of propane in the presence of the radical initiator diacetyl peroxide. Hoping to speed up the reaction, the person used 1 equivalent of the peroxide, leading to large quantities of the ester isopropyl acetate [equation (1)].
a. The $\mathrm{O}-\mathrm{O} \mathrm{DH}^{\circ}$ for diacetyl peroxide is given below ($37 \mathrm{kcal} \mathrm{mol}^{-1}$). Give the missing bond dissociation energies in the equation below in the three boxes provided, using the relevant data in the Table at the top of the page.

b. Calculate the ΔH° value for reaction (1). Show your work.

$$
\Delta H^{\circ}(1): 135.5-215=-79.5 \mathrm{kcal} \mathrm{~mol}^{-1}
$$

c. Is the reaction (1) exothermic? Circle your answer.

Answer:

No
d. Formulate the two propagation steps for reaction (1). Show electron-pushing fishhook arrows.
$1^{\text {st }}$ Propagation step:

e. Calculate the respective ΔH° values for the two propagation steps. Show your work.
ΔH° (1 ${ }^{\text {st }}$ propagation step): $98.5-119=-20.5 \mathrm{kcal} \mathrm{mol}^{-1}$
ΔH° (2 ${ }^{\text {nd }}$ propagation step): $37-96=-59 \mathrm{kcal} \mathrm{mol}^{-1}$
f. The O-O DH ${ }^{\circ}$ for diacetyl peroxide ($37 \mathrm{kcal} \mathrm{mol}^{-1}$) is much lower than that for hydrogen peroxide, $\mathrm{HO}-\mathrm{OH}\left(50 \mathrm{kcal} \mathrm{mol}^{-1}\right)$. Why? Answer in one sentence in the box.

The radical is stabilized by resonance.
VI. [38 Points]
a. Draw the products of the monochlorination of enantiomer \mathbf{A} in the boxes below. The boxes are organized by location of attack. Add all missing substituents to the Fischer stencils provided. Caution: In each box, there are more stencils than you will need. You will lose points for writing more products than required.

At C2 methyl

b. Once you have completed part a ., add the R or S designation to any stereocenters in your products.
c. Does the above radical chlorination of A give any optically inactive (namely achiral or racemic) products? Circle your answer.

Answer:

No

If your answer is yes, circle the position of attack (below) that results in at least one such product (there may be several correct answers):

At C1

At C3

VII. [15 Points]

The monochlorination of hydrocarbon 1 gives constitutional isomers A-E (do not worry about stereocenters).
a. Circle the applicable properties written below each product.

b. The selectivity for the respective hydrogens in this chlorination is tert : sec : prim = 5: 4:1. In the box below, give the expected product ratio in whole numbers (in other words, no need to normalize the ratios).

[^0]VIII. [18 Points]

Table 4-3
Change in Free Energy on Flipping from the Cyclohexane Conformer with the Indicated Substituent
Equatorial to the Conformer with the Substituent Axial

Using the values in the Table above and the cyclohexane stencils provided, show the structures of the most stable conformers of \mathbf{A}, \mathbf{B}, and \mathbf{C}. For each, place an " X " in the box next to the correct energy of "ring flip". Make sure to "cap off" all axial and equatorial bonds that are explicitly shown with substituents and H atoms.
$\Delta \underline{G^{\circ}}$ ring flip $\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$
A: cis-1,3-Diethylcyclohexane

0

$\Delta \underline{G}^{\circ}$ ring flip

IX. [27 Points]
a. Mark the boxes next to your choice of a correct statement. Leave blank the boxes next to incorrect statements.

1. Basicity increases from left to right of a row in the periodic table, because atoms become more electronegative. \square
2. Hybridization of atomic orbitals occurs to maximize bonding and minimize electron repulsion.
X
3. Acidity increases down a column of the periodic table.

4. Water is less basic than ammonia, because oxygen is more electronegative than nitrogen.
5. cis-1,2-Dimethylcyclooctane is meso.
6. In radical chlorination, the second propagation step is rate determining.

b. Consider the bromination of \mathbf{A} at the indicated (arrows) "bridgehead" positions to give \mathbf{B} and C.

7. The products are formed (circle the correct answer):

In equal amounts

2. The products have the following properties (circle the correct answer):

All are optically active
One is optically active and the other is not
None are optically active
c. Which one of the following potential-energy diagrams describes the radical chlorination of methane?

Circle the correct answer:
(A) (B) (C) (D)
(A)
(B)

(C)

(D)

d. Which one of the above potential-energy diagrams describes the equilibrium shown below?

Circle the correct answer:
(A) (B)

(D)

\& The End $\boldsymbol{\rho}$

[^0]: Ratio of A:B:C:D:E=6:6:32:16:10

