Problem 1

The trajectory of the firecracker can be described by the two 'holy grail' kinematics equations:

$$
\begin{equation*}
x(t)=x_{0}+v_{0, x} t+\frac{1}{2} a_{x} t^{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
y(t)=y_{0}+v_{0, y} t+\frac{1}{2} a_{y} t^{2} \tag{2}
\end{equation*}
$$

From the problem statement, we are given that $v_{0, x}=v, v_{0, y}=0, y_{0}=h$, and $a_{y}=-g$. We can also define $x_{0}=0$. Moreover, we know that $a_{x}=-a$, since a negative acceleration is required for the firecracker to turn around and return to the initial x position. Making these substitutions, we obtain that

$$
\begin{equation*}
x(t)=v t-\frac{1}{2} a t^{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
y(t)=h-\frac{1}{2} g t^{2} \tag{4}
\end{equation*}
$$

Now, at the point at which the firecracker hits the ground, $x=0$, and $y=0$. From eq 3 , we can solve for the time at which the firecracker hits the ground:

$$
\begin{equation*}
t=\frac{2 v}{a} \tag{5}
\end{equation*}
$$

and plugging into eq 4 with $y=0$, we obtain the answer:

$$
\begin{equation*}
h=\frac{2 v^{2}}{a^{2}} g \tag{6}
\end{equation*}
$$

Problem 2

We will make use of three key pieces of information that are given in the problem statement. Working in units of $\frac{\mathrm{km}}{\mathrm{hr}}$ and letting v_{w} be the speed of the river and v_{s} be the speed of the students

- The students travel against stream (velocities subtract) and cover 2 km in an hour. Thus,

$$
\begin{equation*}
v_{s}-v_{w}=2 \frac{k m}{h r} \tag{1}
\end{equation*}
$$

- In the total time $t_{\text {tot }}$, the bottle floats a distance of (5-2) $=3 \mathrm{~km}$, going at stream speed. Thus,

$$
\begin{equation*}
v_{w} t_{t o t}=3 \mathrm{~km} \tag{2}
\end{equation*}
$$

- and lastly we can write $t_{t o t}$ in terms of the motion students.

$$
\begin{equation*}
t_{t o t}=1 h r+\frac{5 k m}{v_{s}+v_{w}} \tag{3}
\end{equation*}
$$

where the 1 hr is from the the first leg of their motion, and the second term is after turning around to fetch the bottle.
We can equate equations 2 and 3. Doing so (and rearranging) we get

$$
\begin{equation*}
v_{w}^{2}+2 v_{w}=v_{s}\left(3-v_{w}\right) \tag{4}
\end{equation*}
$$

plugging in equation 1 to eliminate v_{s}, and rearranging, we get

$$
\begin{equation*}
2 v_{w}^{2}+v_{w}-6=0 \tag{5}
\end{equation*}
$$

this can be factored to give

$$
\begin{equation*}
\left(2 v_{w}-3\right)\left(v_{w}+2\right)=0 \tag{6}
\end{equation*}
$$

and only the first term gives a meaningful result since speeds are magnitudes, and magnitudes are positive. Thus,

$$
\begin{equation*}
v_{w}=1.5 \frac{k m}{h r} \tag{7}
\end{equation*}
$$

and for part b)
just plug in the above answer to equation 1 to get

$$
\begin{equation*}
v_{s}=3.5 \frac{\mathrm{~km}}{\mathrm{hr}} \tag{8}
\end{equation*}
$$

Yildiz MTI Fall 2019
(a) For Max m will wont to slide up the cone.
$\stackrel{Y}{\uparrow}$

$$
\vec{N}=N \sin \beta \hat{x}+N \cos \beta \hat{y}
$$

$$
\vec{B} \vec{N}
$$

$$
\overrightarrow{f_{s}}=f_{s} \cos \beta \hat{x}-f_{s} \sin \beta \hat{y}
$$

$$
\sum_{B_{f_{s}}}-
$$

$$
T=\frac{2 \pi}{\omega T}
$$

$$
\begin{equation*}
\sum F_{x}=N \sin \beta+f_{s} \cos \beta=\frac{m v^{2}}{R} \tag{1}
\end{equation*}
$$

$$
V=R w
$$

$$
\begin{equation*}
\sum F_{y}=N \cos \beta-f_{s} \sin \beta-m g=0 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
N \sin \beta+\mu_{s} N \cos \beta=\frac{m w^{2} R^{2}}{R} \tag{1A}
\end{equation*}
$$

$$
f_{s}=\mu_{s} N
$$

$$
\begin{equation*}
N \cos \beta-\mu_{S} N \sin \beta=m g \tag{1B}
\end{equation*}
$$

divide $\frac{1 A}{1 B}=\frac{N\left(\sin \beta+\mu_{s} \cos \beta\right)}{N\left(\cos \beta-\mu_{s} \sin \beta\right)}=\frac{R \sigma^{3}}{g}$

$$
\begin{aligned}
w= & \sqrt{\frac{g}{R} \frac{\left(\sin \beta+\mu_{s} \cos \beta\right)}{\left(\cos \beta-\mu_{s} \sin \beta\right)}} \\
& \vdots \frac{R}{\beta} \quad h \quad \operatorname{Tan} \beta=\frac{h}{R} \\
& : R=\frac{h}{\operatorname{Tan} \beta}
\end{aligned}
$$

$$
w=\sqrt{\frac{g \tan \beta}{h} \frac{\left(\sin \beta+\mu_{s} \cos \beta\right)}{\left(\cos \beta-\mu_{s} \sin \beta\right)}} \sqrt{T_{\text {max }}=2 \pi \sqrt{\frac{h\left(\cos \beta-\mu_{s} \sin \beta\right)}{g \tan \beta\left(\sin \beta+\mu_{s} \cos \beta\right)}}}
$$

Yildiz $\mu t I$
(b) For $\mu \mathrm{in}$ the mass m will wat to slide down the cove

$$
\begin{aligned}
& \xrightarrow[4]{4(1)} \\
& \vec{N}=N \sin \beta \hat{x}+N \cos \beta \hat{y} \\
& \overrightarrow{F_{s}}=-f_{S} \cos \beta \hat{x}+f_{S} \sin \beta \hat{y} \\
& T=\frac{2 \pi}{W r} \quad V=R W \\
& F_{s}=\mu_{s} N \\
& \sum F_{x}=N \sin \beta-f_{s} \cos \beta=\frac{m v^{2}}{R}=\frac{m R^{2} \omega^{2}}{R}=m R \sigma^{2} \\
& \sum F_{y}=N \cos \beta+f_{s} \sin \beta-m g=0
\end{aligned}
$$

$$
\begin{align*}
& N \sin \beta-\mu_{5} N \cos \beta=m R \sigma^{2} \tag{1}\\
& N \cos \beta+\mu_{s} N \sin \beta=m g \tag{2}
\end{align*}
$$

$$
\frac{C}{(2)}=\frac{\Delta v\left(\sin \beta-\mu_{s} \cos \beta\right)}{x\left(\cos \beta+\mu_{s} \sin \beta\right)}=\frac{w R R_{c}{ }^{2}}{\pi \operatorname{sig}}
$$

$$
\omega=\sqrt{\frac{g}{R} \frac{\sin \beta-\mu_{s} \cos \beta}{\cos \beta+\mu_{s} \sin \beta}}
$$

$$
\begin{array}{ll}
\sum_{B}^{\beta} & \quad \operatorname{Tan} \beta=\frac{h}{R} \\
R=\frac{h}{\operatorname{Tan} \beta}
\end{array}
$$

$$
\begin{aligned}
& w=\sqrt{\frac{g \operatorname{Tan} \beta}{h} \frac{\sin \beta-\mu_{s} \cos \beta}{\cos \beta+\mu_{s} \sin \beta}} \\
& T_{\mu \operatorname{in}}=2 \pi \sqrt{\frac{h\left(\cos \beta+\mu_{s} \sin \beta\right)}{g \operatorname{Tan} \beta\left(\sin \beta-\mu_{s} \cos \beta\right)}}
\end{aligned}
$$

The forces at point B are:

These balance in the radial direction, but not in the tangential direction:

$$
\Rightarrow \quad\left\{\begin{aligned}
T_{B}-m g \cos \beta & =0 & & \text { (radial eq) } \\
m g \sin \beta & =m a_{t} & & \text { (tangential eq) }
\end{aligned}\right.
$$

Take the y-eq. from configuration A and the radial equation from configuration B :

$$
\left\{\begin{array}{l}
T_{B}=m g \cos \beta \\
T_{A}=\frac{m g}{\cos \beta}
\end{array} \Longrightarrow \frac{T_{B}}{T_{A}}=\cos ^{2} \beta\right.
$$

Note*: We are able to set the radial acceleration to zero because:

1) The motion of the mass is confined to a circle, so $a_{r}=V^{2} / R$
2) At point
B. $v=0$.

Problem 5 solution

Fall 2019 Physics 7A Lec 002 (Yildiz) Midterm I

The passenger is moving in a circle of radius $r=R_{0}+L \sin \theta$ and therefore has centripetal acceleration $a_{c}=v^{2} / r$. The only forces acting on m are tension $\left(F_{T}\right)$ and gravity ($m g$). We apply Newton's second law for the horizontal and vertical components.

$$
\begin{align*}
& \sum F_{x}=F_{T} \sin \theta=m a_{c} \tag{1}\\
& \sum F_{y}=F_{T} \cos \theta-m g=0 \tag{2}
\end{align*}
$$

a) The second equation can be used to solve for tension $\left(F_{T}=m g / \cos \theta\right)$. We can then obtain an expression for v by plugging in values for F_{T}, a_{c} and r.

$$
\begin{gather*}
\frac{2 \kappa g}{\cos \theta} \sin \theta=\mu \pi \frac{v^{2}}{r} \tag{3}\\
g \tan \theta=\frac{v^{2}}{R_{0}+L \sin \theta} \tag{4}\\
v=\sqrt{(g \tan \theta)\left(R_{0}+L \sin \theta\right)} \tag{5}
\end{gather*}
$$

b) We have already obtained an expression for F_{T}

$$
\begin{equation*}
F_{T}=\frac{m g}{\cos \theta} \tag{6}
\end{equation*}
$$

c) We use the relation between circumference, T and v, plug in expressions for v and r, and then solve for T.

$$
\begin{gather*}
v=\frac{2 \pi r}{T} \Longrightarrow T=2 \pi \frac{r}{v} \tag{7}\\
T=2 \pi \frac{R_{0}+L \sin \theta}{\sqrt{(g \tan \theta)\left(R_{0}+L \sin \theta\right)}} \tag{8}\\
T=2 \pi \sqrt{\frac{R_{0}+L \sin \theta}{g \tan \theta}} \tag{9}
\end{gather*}
$$

