
S20 PHYSICS 7B: Wang MT 1 Solutions

February 25, 2020

1 Problem 1

(a)

The average translational kinetic energy is given by the equipartition theorem, applied only to the
translational degrees of freedom:

〈KE〉 =
3

2
kT. (1.1)

The answer is therefore still 300 K.

(b)

The RMS speed is given by equating the above to the usual expression for kinetic energy:

3

2
kT =

1

2
m 〈v2〉 =⇒ vrms =

√
〈v2〉 =

√
3kT

m
. (1.2)

An oxygen molecule at temperature TO therefore has RMS speed vO,rms =
√

3kTO
32u while a helium

atom has at temperature TH has RMS speed vH,rms =
√

3kTH
4u . Setting the two equal gives:

TH =
4

32
TO =

300

8
= 37.5 K. (1.3)

(c)

At 300 K, the molecule receives contributions from 3 translational and 2 rotational degrees of
freedom, but the vibrational modes are frozen out. Therefore d = 5 and CV = 5

2R. At 3000 K, the
2 vibrational modes activate, giving d = 7, so CV = 7

2 in this case.

2 Problem 2

(a)

The change in energy ∆Eac can be computed from the given information, using the fact that E is
a state function, so:

∆Eac = Qac −Wac = Qabc −Wabc = ∆Eabc. (2.1)

Then we can solve for Qabc as:

Qabc = ∆Eabc +Wabc = Qac −Wac +Wabc = −65 J + 32 J− 54 J = −87 J. (2.2)
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(b)

We can see that the path c→ d is simply a→ b in reverse, but at pressure Pc. In other words:

Wab = Pb∆Vab =⇒ Wcd = Pc∆Vba = −Pc∆Vab. (2.3)

Plugging in for Pc gives

Wcd = −1

2
Pb∆Vab = −1

2
Wab = −1

2
Wabc = 27 J. (2.4)

Then because Wda = 0, we have Wcda = 27 J.

(c)

We know that ∆Ecda = −∆Eabc = −∆Eac. Therefore, we must have:

Qcda = ∆cda +Wcda = −∆Eac +Wcda = −Qac +Wac +Wcda. (2.5)

Plugging in numbers:
Qcda = 65 J− 32 J + 27 J = 60 J. (2.6)

(d)

We calculated in the previous parts:

∆Eac = Qac −Wac = −33 J. (2.7)

Therefore,
∆Eca = −∆Eac = 33 J. (2.8)

(e)

We must have

∆Ecda = ∆Ecd + ∆Eda = (Eint,d − Eint,c) + (Eint,a − Eint,d) = ∆Eca. (2.9)

Therefore,
∆Eda = ∆Eca −∆Ecd = Qda −Wda, (2.10)

but we know Wda = 0, so:

Qda = ∆Eca −∆Ecd = 33 J− 12 J = 21 J. (2.11)

3 Problem 3

(a)

We predict that the final state of the mixture will be a solid aluminum cup and liquid water. The
calorimetry equation is then:

mwLf +mwcw(Tf − Ti,w) +maca(Tf − Ti,a) = 0, (3.1)
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where mf is the mass of the water, Lf is the latent heat of fusion for the water, cw is the specific
heat of water, Ti,w is the initial temperature of the liquid water, ma is the mass of the cup, ca is
the specific heat of aluminum, Ti,a is the initial temperature of the aluminum cup, and Tf is the
final temperature. Solving for Tf :

Tf =
macaTi,a −mwLf +mwcwTi,w

mwcw +maca
. (3.2)

Plugging in numbers:

Tf =
(400 g)(0.9 J/g.K)(353 K)− (20 g)(333 J/g) + (20 g)(4.2 J/g.K)(273 K)

(20 g)(4.2 J/g.K) + (400 g)(0.9 J/g.K)
≈ 323 K. (3.3)

(b)

The entropy change is:

∆S =

∫
dQ

T
=
mwLf

Ti,w
+mwcw log

Tf
Ti,w

+maca log
Tf
Ti,a

(3.4)

4 Problem 4

Let us set the 4 charges in the xy-plane and put the charge Q along the z-axis. It is located
a distance r =

√
b2 + d2/2 from each corner of the square. By symmetry, the electric field due

to the charges in the square points along the z-axis (any component pointing along the x and y
directions will cancel out). We therefore just need to determine the magnitude of the electric field
pointing in the z-direction, corresponding to the magnitude of the z-component of each electric field.

We can determine it with a little trigonometry: we want to multiply the field vector magnitude
by sin θ, θ is the angle between the xy-plane and each electric field vector. But we also know that
sin θ = b

r = b√
b2+d2/2

, so:

Ez = |E| sin θ =
kq

r2
sin θ =

kqb

(b2 + d2/2)3/2
. (4.1)

Multiplying by 4 to get the total field at that point gives the final force as:

~F = Q~Enet = 4QEz ẑ =
4kqQb

(b2 + d2/2)3/2
ẑ. (4.2)

5 Problem 5

(a)

The coefficient of performance of a heat pump is

C =
Q

W
, (5.1)

where Q is the heat moved, and W is the work the pump does. We are heating, so Q = QH is the
heat moved from the cold reservoir to the hot reservoir. We therefore have:

C =
QH

W
=

QH

QH −QC
, (5.2)
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where QC is the heat exhausted to the cold reservoir. Because the heat pump is ideal, we have

C =
QH

QH −QC
=

TH
TH − TC

. (5.3)

If the heat pump is maintaining a constant temperature, the rate of heat dQH
dt being moved needs

to precisely equal the heat leaving the house through conduction:

dQH

dt
=
dW

dt
C = 1300

TH
TH − TC

= 650(TH − TC). (5.4)

We want to determine TC , so:

2TH = (TH − TC)2 =⇒ T 2
C − 2THTC + T 2

H − 2TH = 0, (5.5)

which we can solve as
TC = TH −

√
2TH . (5.6)

Plugging in TH = 294 K gives
TC ∼ 270 K. (5.7)

(b)

If the heat pump runs p percent of the time, the effective work is pW = 1300p. Using our equation
above gives:

1300p
TH

TH − TC
= 650(TH − TC). (5.8)

Solving for p:

p =
(TH − TC)2

2TH
, (5.9)

and plugging in the given temperatures:

p =
(294− 282)2

2(294)
=

144

294
=

12

49
∼ 24%. (5.10)
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