S20 PHYSICS 7B: Wang MT 1 Solutions

February 25, 2020

1 Problem 1

(a)

The average translational kinetic energy is given by the equipartition theorem, applied only to the translational degrees of freedom:

$$
\begin{equation*}
\langle K E\rangle=\frac{3}{2} k T . \tag{1.1}
\end{equation*}
$$

The answer is therefore still 300 K .

(b)

The RMS speed is given by equating the above to the usual expression for kinetic energy:

$$
\begin{equation*}
\frac{3}{2} k T=\frac{1}{2} m\left\langle v^{2}\right\rangle \quad \Longrightarrow \quad v_{\mathrm{rms}}=\sqrt{\left\langle v^{2}\right\rangle}=\sqrt{\frac{3 k T}{m}} \tag{1.2}
\end{equation*}
$$

An oxygen molecule at temperature T_{O} therefore has RMS speed $v_{O, \text { rms }}=\sqrt{\frac{3 k T_{O}}{32 u}}$ while a helium atom has at temperature T_{H} has RMS speed $v_{H, \mathrm{rms}}=\sqrt{\frac{3 k T_{H}}{4 u}}$. Setting the two equal gives:

$$
\begin{equation*}
T_{H}=\frac{4}{32} T_{O}=\frac{300}{8}=37.5 \mathrm{~K} . \tag{1.3}
\end{equation*}
$$

(c)

At 300 K , the molecule receives contributions from 3 translational and 2 rotational degrees of freedom, but the vibrational modes are frozen out. Therefore $d=5$ and $C_{V}=\frac{5}{2} R$. At 3000 K , the 2 vibrational modes activate, giving $d=7$, so $C_{V}=\frac{7}{2}$ in this case.

2 Problem 2

(a)

The change in energy $\Delta E_{a c}$ can be computed from the given information, using the fact that E is a state function, so:

$$
\begin{equation*}
\Delta E_{a c}=Q_{a c}-W_{a c}=Q_{a b c}-W_{a b c}=\Delta E_{a b c} \tag{2.1}
\end{equation*}
$$

Then we can solve for $Q_{a b c}$ as:

$$
\begin{equation*}
Q_{a b c}=\Delta E_{a b c}+W_{a b c}=Q_{a c}-W_{a c}+W_{a b c}=-65 \mathrm{~J}+32 \mathrm{~J}-54 \mathrm{~J}=-87 \mathrm{~J} . \tag{2.2}
\end{equation*}
$$

(b)

We can see that the path $c \rightarrow d$ is simply $a \rightarrow b$ in reverse, but at pressure P_{c}. In other words:

$$
\begin{equation*}
W_{a b}=P_{b} \Delta V_{a b} \quad \Longrightarrow \quad W_{c d}=P_{c} \Delta V_{b a}=-P_{c} \Delta V_{a b} . \tag{2.3}
\end{equation*}
$$

Plugging in for P_{c} gives

$$
\begin{equation*}
W_{c d}=-\frac{1}{2} P_{b} \Delta V_{a b}=-\frac{1}{2} W_{a b}=-\frac{1}{2} W_{a b c}=27 \mathrm{~J} . \tag{2.4}
\end{equation*}
$$

Then because $W_{d a}=0$, we have $W_{c d a}=27 \mathrm{~J}$.
(c)

We know that $\Delta E_{c d a}=-\Delta E_{a b c}=-\Delta E_{a c}$. Therefore, we must have:

$$
\begin{equation*}
Q_{c d a}=\Delta_{c d a}+W_{c d a}=-\Delta E_{a c}+W_{c d a}=-Q_{a c}+W_{a c}+W_{c d a} . \tag{2.5}
\end{equation*}
$$

Plugging in numbers:

$$
\begin{equation*}
Q_{c d a}=65 \mathrm{~J}-32 \mathrm{~J}+27 \mathrm{~J}=60 \mathrm{~J} . \tag{2.6}
\end{equation*}
$$

(d)

We calculated in the previous parts:

$$
\begin{equation*}
\Delta E_{a c}=Q_{a c}-W_{a c}=-33 \mathrm{~J} . \tag{2.7}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\Delta E_{c a}=-\Delta E_{a c}=33 \mathrm{~J} \tag{2.8}
\end{equation*}
$$

(e)

We must have

$$
\begin{equation*}
\Delta E_{c d a}=\Delta E_{c d}+\Delta E_{d a}=\left(E_{\mathrm{int}, d}-E_{\mathrm{int}, c}\right)+\left(E_{\mathrm{int}, a}-E_{\mathrm{int}, d}\right)=\Delta E_{c a} . \tag{2.9}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\Delta E_{d a}=\Delta E_{c a}-\Delta E_{c d}=Q_{d a}-W_{d a}, \tag{2.10}
\end{equation*}
$$

but we know $W_{d a}=0$, so:

$$
\begin{equation*}
Q_{d a}=\Delta E_{c a}-\Delta E_{c d}=33 \mathrm{~J}-12 \mathrm{~J}=21 \mathrm{~J} . \tag{2.11}
\end{equation*}
$$

3 Problem 3

(a)

We predict that the final state of the mixture will be a solid aluminum cup and liquid water. The calorimetry equation is then:

$$
\begin{equation*}
m_{w} L_{f}+m_{w} c_{w}\left(T_{f}-T_{i, w}\right)+m_{a} c_{a}\left(T_{f}-T_{i, a}\right)=0, \tag{3.1}
\end{equation*}
$$

where m_{f} is the mass of the water, L_{f} is the latent heat of fusion for the water, c_{w} is the specific heat of water, $T_{i, w}$ is the initial temperature of the liquid water, m_{a} is the mass of the cup, c_{a} is the specific heat of aluminum, $T_{i, a}$ is the initial temperature of the aluminum cup, and T_{f} is the final temperature. Solving for T_{f} :

$$
\begin{equation*}
T_{f}=\frac{m_{a} c_{a} T_{i, a}-m_{w} L_{f}+m_{w} c_{w} T_{i, w}}{m_{w} c_{w}+m_{a} c_{a}} . \tag{3.2}
\end{equation*}
$$

Plugging in numbers:

$$
\begin{equation*}
T_{f}=\frac{(400 \mathrm{~g})(0.9 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K})(353 \mathrm{~K})-(20 \mathrm{~g})(333 \mathrm{~J} / \mathrm{g})+(20 \mathrm{~g})(4.2 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K})(273 \mathrm{~K})}{(20 \mathrm{~g})(4.2 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K})+(400 \mathrm{~g})(0.9 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K})} \approx 323 \mathrm{~K} . \tag{3.3}
\end{equation*}
$$

(b)

The entropy change is:

$$
\begin{equation*}
\Delta S=\int \frac{d Q}{T}=\frac{m_{w} L_{f}}{T_{i, w}}+m_{w} c_{w} \log \frac{T_{f}}{T_{i, w}}+m_{a} c_{a} \log \frac{T_{f}}{T_{i, a}} \tag{3.4}
\end{equation*}
$$

4 Problem 4

Let us set the 4 charges in the $x y$-plane and put the charge Q along the z-axis. It is located a distance $r=\sqrt{b^{2}+d^{2} / 2}$ from each corner of the square. By symmetry, the electric field due to the charges in the square points along the z-axis (any component pointing along the x and y directions will cancel out). We therefore just need to determine the magnitude of the electric field pointing in the z-direction, corresponding to the magnitude of the z-component of each electric field.

We can determine it with a little trigonometry: we want to multiply the field vector magnitude by $\sin \theta, \theta$ is the angle between the $x y$-plane and each electric field vector. But we also know that $\sin \theta=\frac{b}{r}=\frac{b}{\sqrt{b^{2}+d^{2} / 2}}$, so:

$$
\begin{equation*}
E_{z}=|E| \sin \theta=\frac{k q}{r^{2}} \sin \theta=\frac{k q b}{\left(b^{2}+d^{2} / 2\right)^{3 / 2}} . \tag{4.1}
\end{equation*}
$$

Multiplying by 4 to get the total field at that point gives the final force as:

$$
\begin{equation*}
\vec{F}=Q \vec{E}_{\mathrm{net}}=4 Q E_{z} \hat{z}=\frac{4 k q Q b}{\left(b^{2}+d^{2} / 2\right)^{3 / 2}} \hat{z} . \tag{4.2}
\end{equation*}
$$

5 Problem 5

(a)

The coefficient of performance of a heat pump is

$$
\begin{equation*}
C=\frac{Q}{W}, \tag{5.1}
\end{equation*}
$$

where Q is the heat moved, and W is the work the pump does. We are heating, so $Q=Q_{H}$ is the heat moved from the cold reservoir to the hot reservoir. We therefore have:

$$
\begin{equation*}
C=\frac{Q_{H}}{W}=\frac{Q_{H}}{Q_{H}-Q_{C}}, \tag{5.2}
\end{equation*}
$$

where Q_{C} is the heat exhausted to the cold reservoir. Because the heat pump is ideal, we have

$$
\begin{equation*}
C=\frac{Q_{H}}{Q_{H}-Q_{C}}=\frac{T_{H}}{T_{H}-T_{C}} . \tag{5.3}
\end{equation*}
$$

If the heat pump is maintaining a constant temperature, the rate of heat $\frac{d Q_{H}}{d t}$ being moved needs to precisely equal the heat leaving the house through conduction:

$$
\begin{equation*}
\frac{d Q_{H}}{d t}=\frac{d W}{d t} C=1300 \frac{T_{H}}{T_{H}-T_{C}}=650\left(T_{H}-T_{C}\right) . \tag{5.4}
\end{equation*}
$$

We want to determine T_{C}, so:

$$
\begin{equation*}
2 T_{H}=\left(T_{H}-T_{C}\right)^{2} \quad \Longrightarrow \quad T_{C}^{2}-2 T_{H} T_{C}+T_{H}^{2}-2 T_{H}=0, \tag{5.5}
\end{equation*}
$$

which we can solve as

$$
\begin{equation*}
T_{C}=T_{H}-\sqrt{2 T_{H}} . \tag{5.6}
\end{equation*}
$$

Plugging in $T_{H}=294 \mathrm{~K}$ gives

$$
\begin{equation*}
T_{C} \sim 270 \mathrm{~K} . \tag{5.7}
\end{equation*}
$$

(b)

If the heat pump runs p percent of the time, the effective work is $p W=1300 p$. Using our equation above gives:

$$
\begin{equation*}
1300 p \frac{T_{H}}{T_{H}-T_{C}}=650\left(T_{H}-T_{C}\right) . \tag{5.8}
\end{equation*}
$$

Solving for p :

$$
\begin{equation*}
p=\frac{\left(T_{H}-T_{C}\right)^{2}}{2 T_{H}} \tag{5.9}
\end{equation*}
$$

and plugging in the given temperatures:

$$
\begin{equation*}
p=\frac{(294-282)^{2}}{2(294)}=\frac{144}{294}=\frac{12}{49} \sim 24 \% . \tag{5.10}
\end{equation*}
$$

