University of California, Berkeley Physics

7B Spring 2020 MidTerm Exam I

Thermodynamics and Electrical Force

Maximum score: 100 points

1. (15 points)

Helium atoms have a mass of $4 u$ and oxygen molecules have a mass of 32 u , where u is defined as an atomic mass unit ($u=1.660540 \times 10{ }^{-27} \mathrm{~kg}$). Compare a gas of helium atoms to a gas of oxygen molecules.
(a) At what gas temperature T_{E} would the average translational kinetic energy of a helium atom be equal to that of an oxygen molecule in a gas of temperature 300 K ?
(b) At what gas temperature $\mathrm{T}_{\mathrm{rms}}$ would the root-mean-square (rms) speed of a helium atom be equal to that of an oxygen molecule in a gas at 300 K ?
(c) What is the molar specific heat at constant volume (c_{v}) of oxygen molecules at 300 K and at 3000 K , respectively?
2. (25 points)

When a gas is taken from point a to point c along the curved path in the figure 1, the work done by the gas is $W_{a c}=-32 \mathrm{~J}$ and the heat added to the gas is $\mathrm{Q}_{\mathrm{ac}}=-65 \mathrm{~J}$. Along path abc, the work done is $\mathrm{W}_{\mathrm{abc}}=-54 \mathrm{~J}$.
(a) What is Q for path abc?
(b) If $\mathrm{Pc}=0.5 \times \mathrm{Pb}$, what is W for path cda?
(c) What is Q for path cda?
(d) What is $\mathrm{E}_{\mathrm{int}, \mathrm{a}}-\mathrm{E}_{\mathrm{int}, \mathrm{c}}$?
(e) If $\mathrm{E}_{\mathrm{int}, \mathrm{d}}-\mathrm{E}_{\mathrm{int}, \mathrm{c}}=12 \mathrm{~J}$, what is Q for path da?

Fig. 1
3. (20 points)

A 400 g insulated aluminum cup at $80^{\circ} \mathrm{C}$ is filled with 20 g of ice at $0^{\circ} \mathrm{C}$.
(a) Determine the final temperature of the mixture. The specific heats of water and aluminum are $4.2 \mathrm{~J} / \mathrm{g} . \mathrm{K}$ and $0.9 \mathrm{~J} / \mathrm{g} . \mathrm{K}$, respectively. The heat of fusion of water is $333 \mathrm{~J} / \mathrm{g}$. (b) Determine the total change in entropy as a result of the mixing process.

4. (20 points)

Four charges of magnitude +q are placed at the corners of a square whose sides have a length d . What is the magnitude of the total force exerted by the four charges on a charge Q located a distance b along a line perpendicular to the plane of the square and equidistant from the four charges?

5. (20 points)

An ideal heat pump is used to maintain the inside temperature of a house at $\mathrm{Tin}=21^{\circ} \mathrm{C}$ when the outside temperature is Tout. Assume that when it is operating, the heat pump does work at a rate of 1300 W . Also assume that the house loses heat via conduction through its walls and other surfaces at a rate given by $\left(650 \mathrm{~W} /{ }^{\circ} \mathrm{C}\right)\left(\mathrm{T}_{\text {in }}-\mathrm{T}_{\text {out }}\right)$.
(a) For what outside temperature would the heat pump have to operate at all times in order to maintain the house at an inside temperature of $21^{\circ} \mathrm{C}$?
(b) If the outside temperature is $9^{\circ} \mathrm{C}$, what percentage of the time does the heat pump have to operate in order to maintain the house at an inside temperature of $21^{\circ} \mathrm{C}$?

$$
\begin{gathered}
\Delta l=\alpha l_{0} \Delta T \\
\Delta V=\beta V_{0} \Delta T \\
P V=N k T=n R T \\
\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k T \\
E_{\text {int }}=\frac{d}{2} N k T \\
Q=m c \Delta T=n C \Delta T \\
Q=m L \text { (For a phase transition) }
\end{gathered}
$$

$$
\begin{gathered}
\Delta E_{\text {int }}=Q-W \\
d E_{\text {int }}=d Q-P d V \\
W=\int P d V \\
C_{P}-C_{V}=R=N_{A} k
\end{gathered}
$$

$P V^{\gamma}=$ const. (For a reversible adiabatic process)

$$
\begin{gathered}
\gamma=\frac{C_{P}}{C_{V}}=\frac{d+2}{d} \\
C_{V}=\frac{d}{2} R \\
\frac{d Q}{d t}=-k A \frac{d T}{d x} \\
e=\frac{W_{\text {net }}}{Q_{\text {in }}} \\
e_{\text {ideal }}=1-\frac{T_{L}}{T_{H}} \\
S=\int \frac{d Q}{T}(\text { For reversible processes }) \\
d Q=T d S
\end{gathered}
$$

$\Delta S_{s y s t}+\Delta S_{\text {env }}>0$ (For irreversible processes)

$$
\oint d E=\oint d S=0
$$

	Q	W
Isobaric	$C_{P} n \Delta T$	$P \Delta V$
Isochoric	$C_{V} n \Delta T$	0
Isothermal	$n R T \ln \left(\frac{V_{f}}{V_{0}}\right)$	$n R T \ln \left(\frac{V_{f}}{V_{0}}\right)$
Adiabatic	0	$-\frac{d}{2}\left(P_{f} V_{f}-P_{0} V_{0}\right)$

$$
\begin{gathered}
\vec{F}=\frac{Q_{1} Q_{2}}{4 \pi \epsilon_{0} r^{2}} \hat{r}=\frac{k Q_{1} Q_{2}}{r^{2}} \hat{r} \\
\vec{F}=Q \vec{E} \\
d \vec{E}=\frac{d Q}{4 \pi \epsilon_{0} r^{2}} \hat{r}=\frac{k d Q}{r^{2}} \hat{r}
\end{gathered}
$$

$$
\int\left(1+x^{2}\right)^{-1 / 2} d x=\ln \left(x+\sqrt{1+x^{2}}\right)
$$

$$
\int\left(1+x^{2}\right)^{-1} d x=\arctan (x)
$$

$$
\int\left(1+x^{2}\right)^{-3 / 2} d x=\frac{x}{\sqrt{1+x^{2}}}
$$

$$
\int \frac{x}{1+x^{2}} d x=\frac{1}{2} \ln \left(1+x^{2}\right)
$$

$$
\int \frac{1}{\cos (x)} d x=\ln \left(\left|\tan \left(\frac{x}{2}+\frac{\pi}{4}\right)\right|\right)
$$

$$
\int \frac{1}{\sin (x)} d x=\ln \left(\left|\tan \left(\frac{x}{2}\right)\right|\right)
$$

$$
\sin (x) \approx x
$$

$$
\cos (x) \approx 1-\frac{x^{2}}{2}
$$

$$
e^{x} \approx 1+x+\frac{x^{2}}{2}
$$

$$
(1+x)^{\alpha} \approx 1+\alpha x+\frac{(\alpha-1) \alpha}{2} x^{2}
$$

$$
\ln (1+x) \approx x-\frac{x^{2}}{2}
$$

$$
\sin (2 x)=2 \sin (x) \cos (x)
$$

$$
\cos (2 x)=2 \cos ^{2}(x)-1
$$

$$
\sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b)
$$

$$
\cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b)
$$

$$
\begin{aligned}
& 1+\cot ^{2}(x)=\csc ^{2}(x) \\
& 1+\tan ^{2}(x)=\sec ^{2}(x)
\end{aligned}
$$

