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February 24, 2020

1 Problem 1

(a)

By the ideal gas law:

Tf =
PfVf
nR

=
1.1PiVi
nR

= 1.1Ti. (1.1)

(b)

Our equation for linear expansion says:

Vf
Vi

= 1.1 = (1 + α∆T )3 ∼ 1 + 3α∆T = 1 + 0.3αTi. (1.2)

We hence find:

α =
1

3Ti
. (1.3)

(c)

The equipartition theorem says the average kinetic energy of a single molecule is:

〈E〉 =
3

2
kT = 3kT =

1

2
m 〈v2〉 =⇒ vrms =

√
〈v2〉 =

√
3kT

m
. (1.4)

Then the ratio of RMS velocities is:

vf,rms

vi,rms
=

√
Tf
Ti

=
√

1.1 > 1. (1.5)

The result is greater than 1, because the temperature after the expansion is larger, implying the
average kinetic energy of the particles is larger.

(d)

As a monatomic gas, neon has no rotational degrees of freedom, so d = 3. For water molecules with
no vibrational modes, d = 6, corresponding to 3 translational and 3 rotational degrees of freedom.
Then the equipartition theorem says the average energy of a n moles of water vapor is:

∆EW = 3nR(Tf − Ti) =
3

10
nRTi, (1.6)

while the change of internal energy of neon gas is

∆EN =
3

2
nR(Tf − Ti) =

3

20
nRTi < ∆EW . (1.7)

We see that the change in energy is greater for the neon gas – this is because the heat capacity
at constant pressure CP is smaller for neon gas, due to the fact that it does not have rotational
degrees of freedom.
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2 Problem 2

(a)

By the ideal gas law:

PATA = C =
P 2
AVA
nR

, (2.1)

where C is a constant. We hence have

P 2
AVA = P 2

BVB = (2PA)2VB = 4P 2
AVB. (2.2)

We conclude VB = 1
4VA.

Figure 1: Diagram for 2a, 2b

(b)

The work is computed as:

W =

∫ VB

VA

P dV =

∫ VA/4

VA

√
nRC

V
dV = 2

√
nRC(

√
VA/4−

√
VA) = −

√
nRCVA. (2.3)

Then using nRC = P 2
AVA, we find

W = −PAVA. (2.4)

The work is negative because the volume of the gas decreased. Graphically, the work is given by
the area underneath the curve on a PV -diagram.
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(c)

The heat is Q = ∆EAB +W . From the first part, we know:

P 2
B = P 2

A

VA
VB

= 4P 2
A, (2.5)

and hence the ideal gas law says

TB =
PBVB
nR

=
PAVA
2nR

. (2.6)

Then the equipartition theorem with d = 3 for a monatomic ideal gas gives

∆EAB =
3

2
nR(TB − TA) = −3

4
PAVA. (2.7)

We hence find

Q = −7

4
PAVA (2.8)

(d)

The change in entropy is:

∆S =

∫
dQ

T
=

∫
dE + dW

T
=

3

2
nR

∫ TB

TA

dT

T
+

∫ VB

VA

P

T
dV. (2.9)

The first integral can be evaluated as

3

2
nR

∫ TB

TA

dT

T
=

3

2
nR ln

TB
TA

=
3

2
nR ln

PBVB
PAVA

=
3

2
nR ln

1
2PAVA

PAVA
= −3

2
nR ln 2. (2.10)

The second integral can be evaluated by noting:∫ VB

VA

P

T
dV =

∫ VB

VA

nRT

TV
dV = nR

∫ VB

VA

dV

V
= nR ln

VB
VA

= −nR ln 4 = −2nR ln 2. (2.11)

We hence conclude ∆S = −7
2nR ln 2. This result does not violate the 2nd Law, because the

environment entropy increases by at least the same amount so the total entropy of the process is
non-negative.

3 Problem 3

(a)

Taking room temperature to be around 30 degrees Celsius, we follow the line at 1 atm, and we see
that at equilibrium, the material will be in the vapor phase.

(b)

The plot has 3 parts, labeled by a, b, c, d. In a, the material is solid and warming up due to
exposure to a higher temperature. At -78.4 degrees Celsius, the material begins to undergo a phase
transformation, as depicted by b. Here, the temperature stays constant over time as the energy
from the environment causes the material to change phase. After the phase change, the material
is in the vapor stage, depicted by c. The vapor now continues to increase in temperature, until it
reaches room temperature, which we have modeled as 30 degrees Celsius. In d, the vapor is now in
equilibrium and stays at a constant temperature.
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Figure 2: Plot for 3b.

(c)

Figure 3: Diagram for 3c.

(d)

We superimpose the electric field due to the three point charges at A, B, and C at point O. The
fields are:

• ~EA(O) = −kq
d2
î

• ~EB(O) = kq
d2
ĵ

• ~EC(O) = −kq
d2
î.

The total field at O from the three point charges is therefore:

~EABC(O) = ~EA(O) + ~EB(O) + ~EC(O) = −2kq

d2
î+

kq

d2
ĵ. (3.1)

The force on a 2q charge at O is therefore:

~F = 2q ~EABC(O) = −4kq2

d2
î+

2kq2

d2
ĵ. (3.2)
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4 Problem 4

(a)

Figure 4: Diagram for 4a.

By the ideal gas law:

PAVA = nRTA =⇒ TA =
PAVA
nR

. (4.1)

The adiabatic index is γ = d+2
d and here d = 2, so γ = 2. Then the result of the expansion A→ B

gives:

PAV
2
A = constant = PBV

2
B = PB(4VA)2 = 16PBV

2
A =⇒ PB =

1

16
PA, (4.2)

and hence

TB =
PBVB
nR

=
PAVA
4nR

. (4.3)

The result of the isobaric compression B → C can be computed from the ideal gas law directly:

PCVC = 2PBVA =
1

8
PAVA =⇒ TC =

PAVA
8nR

. (4.4)

Finally, the adiabatic compression C → D implies

PCV
2
C =

1

16
PA(2VA)2 =

1

4
PAV

2
A = PDV

2
A =⇒ PD =

1

4
PA. (4.5)

Hence the ideal gas law gives

TD =
PDVD
nR

=
PAVA
4nR

. (4.6)

(b)

There are two equivalent approaches; the first is to explicitly compute the work in each processes
as follows:
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• A→ B: W = −∆EAB = −d
2nR(TB − TA) = 3

4PAVA

• B → C: W = PB(2VA − 4VA) = −1
8PAVA

• C → D: W = −∆ECD = −nR(TD − TC) = −1
8PAVA

• D → A: W = 0

Summing everything, we find Wnet = 1
2PAVA. The second approach is to use the fact that the

energy is a state function, and hence ∆E = 0 for the entire cycle. This then implies Wnet = Qnet.
The heat in each process is:

• A→ B: Q = 0

• B → C: Q = nCP (TC − TB) = −1
4PAVA

• C → D: Q = 0

• D → C: Q = nCV (TA − TD) = 3
4PAVA

We hence find Wnet = Qnet = 1
2PAVA.

(c)

The efficiency is:

η =
Wnet

Qin
=

1
2PAVA
3
4PAVA

=
2

3
(4.7)

(d)

The Carnot efficiency is

ηC = 1− Tcold
Thot

= 1− TC
TA

= 1− 1

8
=

7

8
. (4.8)

We see ηC ≥ η, as expected.

5 Problem 5

(a)

The heat flow equation is:
dQ

dt
= −kA(x)

dT

dx
, (5.1)

where we set x = 0 to the left and x = L to the right. The cross-sectional area A(x) is A(x) =

π
[
R1 + x

L(R2 −R1)
]2

. Because the rod is perfectly insulated, all heat that enters the rod leaves
the other end. Given a constant flow rate C:

−kA(x)
dT

dx
= C =⇒ − k

C
dT =

1

A(x)
dx (5.2)
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We can integrate each side:

− k
C

∫ TB

TF

dT =

∫ L

0

dx

π
[
R1 + x

L(R2 −R1)
]2 , (5.3)

Choosing u = R1 + x
L(R2 −R1) with du = R2−R1

L dx, we obtain:

− k
C

(TB − TF ) =
L

π(R2 −R1)

∫ R2

R1

du

u2
= − L

π(R2 −R1)

R1 −R2

R1R2
=

L

πR1R2
. (5.4)

Then solving for the flow rate C:

C =
kπR1R2(TF − TB)

L
. (5.5)

Because TB > TF , the heat flow is in the negative x direction, corresponding to the heat flowing
from the boiling water to the ice, as expected.

(b)

In the left container, we have a mass m of water at 273 K, and in the right container, we have a
mass m/2 of water at 373 K. Then the calorimetry equation is

mCw(Tf − TF ) +
1

2
mCw(Tf − TB) = 0, (5.6)

where Tf is the final temperature of the water. Solving, we find:

Tf =
2TF + TB

3
(5.7)

(c)

The change in entropy of the water is determined by the integral:

∆S =

∫
dQ

T
= mCw

∫ Tf

TF

dT

T
+

1

2
mCw

∫ Tf

TB

dT

T
= mCw

(
log

Tf
TF

+
1

2
log

Tf
TB

)
. (5.8)

The container is insulated, so the surroundings receive no heat, and hence there is no change in
entropy of the surroundings. The change above is therefore the total change in entropy.
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