
Paxson
Spring 2017

CS 161
Computer Security Midterm 1

Print your name: ,
(last) (first)

I am aware of the Berkeley Campus Code of Student Conduct and acknowledge that any
academic misconduct will be reported to the Center for Student Conduct, and may result in
partial or complete loss of credit.

Sign your name:

Print your class account login: cs161- and SID:

Your TA’s name:

Your section time:

Exam # for person
sitting to your left:

Exam # for person
sitting to your right:

You may consult one sheet of paper (double-sided) of notes. You may not consult other notes,
textbooks, etc. Calculators, computers, and other electronic devices are not permitted.

You have 80 minutes. There are 5 questions, of varying credit (300 points total). The
questions are of varying difficulty, so avoid spending too long on any one question. Parts of
the exam will be graded automatically by scanning the bubbles you fill in, so please do
your best to fill them in somewhat completely. Don’t worry—if something goes wrong with
the scanning, you’ll have a chance to correct it during the regrade period.

If you have a question, raise your hand, and when an instructor motions to you,
come to them to ask the question.

Do not turn this page until your instructor tells you to do so.

Question: 1 2 3 4 5 Total

Points: 64 62 58 56 60 300

Score:

Page 1 of 18

Problem 1 True/False (64 points)
For each of the following, FILL IN THE BUBBLE next to True if the statement is
correct, or next to False if it is not. Each correct answer is worth 4 points. Incorrect
answers are worth 0 points. Answers left blank are worth 1 point.

(a) Framebusting allows Javascript in an outer page to access the cookies associated
with an inner page loaded in an iframe.

True False

(b) http://www.coolvids.com:3000/index.html is in the same origin as
http://coolvids.com:3000/index.html.

True False

(c) Browsers apply the Same Origin Policy to determine what URLs can be loaded in
iframes.

True False

(d) If Tyrion uses a browser with no code vulnerabilities and uses a unique, long pass-
word for every website he visits, then he will be safe against phishing attacks.

True False

(e) A recommended defense against clickjacking attacks is for servers to include an
HTTP X-Frame-Options header in its replies.

True False

(f) HTTP-Only Cookies are designed to prevent CSRF attacks.

True False

(g) An attacker can steal Alice’s cookies for www.squigler.com by exploiting a buffer
overflow vulnerability in Alice’s browser.

True False

Solution: The key concept underlying this question is that if an attacker can
exploit a buffer overflow, they can inject code into Alice’s browser that will make
the browser do whatever they wish—including transmit cookies to a remote
server.

Midterm 1 Page 2 of 18 CS 161 – SP 17

(h) Executable Space Protection (e.g., DEP and W⊕X) is a defense against buffer
overflow attacks.

True False

(i) ASLR is a defense against buffer overflow attacks that requires operating system
support.

True False

(j) ASLR will prevent any attack that overflows local variables from executing injected
code.

True False

(k) Stack canaries are a defense against buffer overflow attacks that requires operating
system support.

True False

Solution: A compiler can add the canary generation and checking without
needing any extra functionality from the operating system.

(l) Stack canaries will prevent any attack that overflows local variables from executing
injected code.

True False

(m) Stack canaries provide some protection against printf format string vulnerabilities,
but do not protect against all such vulnerabilities.

True False

Solution: The original solution stated the following, in support of an answer
of True:

printf format string vulnerabilities allow attackers to write to the
stack. If part of what an attacker writes is a new RIP value to cause
a jump to code they’ve written elsewhere on the stack, then stack
canaries will prevent the attack from succeeding.

However, this perspective reflects a variant of stack canaries not discussed in
class. (The variant encodes the correct RIP, and in some versions the correct

Midterm 1 Page 3 of 18 CS 161 – SP 17

SFP, into the canary.) As discussed on Piazza, for “vanilla” stack canaries, an
attacker who is at all careful can always avoid altering the canary. Thus, the
correct answer is False, as such canaries do not provide any protection.

This other part of the original solution remains correct regardless of the type of
canary:

On the other hand, other forms of format string vulnerabilities read
data from the stack but do not alter stack contents; or write onto
the stack in pinpoint locations (for example, to alter the value of a
variable). Stack canaries cannot prevent these attacks.

(n) AMD’s NX feature, and Intel’s similar XD feature, provide protections against XSS
attacks.

True False

(o) If a web page from abc.com includes a script from xyz.com, the Same Origin Policy
puts the script from xyz.com in the abc.com origin.

True False

Solution: When discussing the SOP, we pointed out this important “excep-
tion” when loading Javascript. It enables the use of Javascript “libraries”. One
example we used was how many web sites will include a Google Analytics script,
which they load from one of Google’s servers (and thus it comes from one of
Google’s origins).

(p) The Same Origin Policy prevents XSS attacks if a browser implements it correctly.

True False

Midterm 1 Page 4 of 18 CS 161 – SP 17

Problem 2 Multiple Choice (62 points)

(a) (8 points) Many people lock valuables in a safe in their house in addition to locking
the doors of the house. Mark ONE security principle that best fits with this
approach:

Ensure Complete Mediation

Defense in Depth

Don’t rely on security through obscurity

Privilege Separation

Solution: The situation described requires an adversary to work their way past
both of two separate defenses.

(b) (8 points) Bob places a duplicate key to his house under one particular stone in his
front yard in case he forgets or loses his main key. Mark ONE security principle
that best fits with his approach:

Ensure Complete Mediation

Defense in Depth

Don’t rely on security through obscurity

Privilege Separation

Solution: Bob’s approach fails if an adversary knows its details.

(c) (10 points) Assume that an airport wants to achieve two security goals: (a) pas-
sengers can only board planes if they have boarding passes issued in their actual
name, and (b) passengers cannot board planes unless they have undergone a secu-
rity inspection by the TSA.

Consider the following design that an airport uses to try to meet these goals. The
airport operators arrange that passengers can only board an airplane if they:

1. show a boarding pass and photo ID at a TSA security checkpoint, for which
the photo on the ID matches the passenger presenting it, and the name on the
ID matches that on the boarding pass

2. pass through a TSA security inspection at that checkpoint

3. present a boarding pass at the gate when actually going onto the plane

Also assume that the TSA correctly carries out its inspections of passengers, their
boarding passes, and their photo IDs.

Mark ALL of the following concepts that are relevant to analyzing whether the
airport’s design achieves goals (a) and (b). You should only consider the approach

Midterm 1 Page 5 of 18 CS 161 – SP 17

as described above. Do not consider any additional facts that you happen to know
about how airport security actually works.

Code is Data and Data is Code

Ensure complete mediation

Injection vulnerability

TOCTTOU vulnerability

Whitelisting

Solution: The airport needs to make sure that its checks always occur, hence
there are concerns regarding ensuring complete mediation. In addition, the
check for the photo ID match is done separately from passengers actually board-
ing a plane. This introduces a Time-of-Check-to-Time-of-Use vulnerability in
that once past the TSA security check, two passengers can swap boarding passes,
undermining one of the security goals.

As described, there are no instances of information being treated as instructions,
which both “Code is Data and Data is Code” and “Injection vulnerability” refer
to. In addition, “Whitelisting” refers to only allowing a restricted, predefined
set of accesses. While the photo ID check restricts access, it does not do so
using a predefined list. That would only be the case if the airport had a list of
“approved fliers” and only allowed them past the security check. (Actual US
airport security employs blacklisting : the TSA’s “no-fly” list.)

There was considerable discussion on Piazza regarding just what constitutes a
whitelist. The key notions concern: (1) a list created ahead of time, and not
data-dependent (e.g., not created per-user), (2) analyzed to establish its safety
properties, (3) analyzed to determine that it’s not overly restrictive.

(d) (12 points) Which of the following attacks can web servers protect against by san-
itizing user input? Mark ALL that apply, even for cases where there are better
ways to protect against the attack than sanitization.

XSS

CSRF

SQL Injection

Phishing

Drive-by Malware

Clickjacking

Solution: Sanitizing user input (more broadly, untrusted data) means trans-
forming it in some fashion to remove or deactivate (say by quoting) elements
that could be treated as instructions rather than data. This applies to XSS (for

Midterm 1 Page 6 of 18 CS 161 – SP 17

which untrusted data can be sanitized by removing <script> tags, for exam-
ple), and to SQL Injection (for example, escaping single quotes, though this is
tricky to get right).

CSRF vulnerabilities have to do with how websites structure the actions that
users take. A CSRF attack looks identical to a legitimate request; thus, saniti-
zation can’t help with blocking them.

Phishing attacks and drive-by malware target browsers rather than web servers.

In Clickjacking attacks, target web servers receive requests that look identical
to legitimate requests.

(e) (12 points) Which of the following are defenses against XSS vulnerabilities? Mark
ALL that apply.

Use browsers written in a memory-
safe language

Use Content Security Policy headers
to turn off inline scripts

Always set cookies using the
“secure” flag

Prevent webpages from being
framed by other domains

Make sure that browsers enforce the
Same Origin Policy

Use HTML escaping

Solution: XSS vulnerabilities exist due to web servers either (1) allowing users
to store enriched HTML content in a manner such that other users can view it
(Stored XSS), or (2) including in a reply elements derived from the URL that
was sent to make the corresponding request.

CSP can defend against XSS vulnerabilities by controlling which scripts a browser
will execute. In particular, one of the most powerful features of CSP in this re-
gard is that it disables executing of “inline” scripts, meaning those that are
directly included in web pages returned by the server.

HTML escaping will transform the meta-characters used in XSS into alternative
representations that a browser will treat as data (e.g., <script&rt; instead
of <script>) rather than instructions.

XSS attacks reflect logic flaws (unintended functionality) rather than memory-
safety vulnerabilities, so using a memory-safe language won’t help.

The “secure” flag for cookies causes cookies to only be sent over a secure network
channel (using HTTPS rather than HTTP). In XSS attacks, how the script is
conveyed over the network does not matter.

Midterm 1 Page 7 of 18 CS 161 – SP 17

Preventing webpages from being framed helps against clickjacking attacks, but
attackers do not need to use frames in order to launch XSS attacks.

The main goal of XSS attacks is to fool browsers into executing Javascript from
a target site’s origin rather than from the attacker’s origin (hence, “cross-site”
in the name). The trickery is necessary because browsers do in fact enforce
the Same Origin Policy. Thus, the SOP does not help to defend against XSS
vulnerabilities—it’s what inspires attackers to figure them out in the first place.

(f) (12 points) Suppose that the Acme Browser ensures that the URL displayed at the
top of a given window (in the “address bar”) always accurately reflects the URL of
the page the browser is displaying in that window. It is not possible for any script
to alter what’s shown as the URL, nor to overlay text on top of the address bar.

Alice, a security-minded user, runs Acme browser. She loads a page from hohum.com.
The address bar displays http://hohum.com/path , where path contains a bunch
of text (all of which fits into the address bar, and thus is visible). Alice has no
information about the trustworthiness of the hohum.com site.

By carefully inspecting the URL in the address bar, for which of the following Web
security attacks can Alice at least partially defend herself. Mark ALL that apply.
Do not mark an attack if Alice can only possibly detect that the attack happened.
Only mark attacks that she can (at least sometimes) keep from happening.

CSRF

Clickjacking

Phishing

Reflected XSS

SQL Injection

Stored XSS

Solution: In one form of clickjacking attack, the attacker displays a legitimate
page in an iframe and puts above it invisible elements to capture the input the
user attempts to provide to the legitimate page. We saw this example in lecture
with capturing keystrokes meant to be sent to Calnet authentication. Alice can
defend herself against this scenario by observing that the URL shows evil.com
rather than something like xyz.berkeley.edu.

Many phishing attacks display a page for the user that looks legitimate but in
fact is a mock-up. We saw this in lecture for the fake Paypal account confirma-
tion pages. Alice can defend herself against such attacks by observing that the
URL shows evil.com rather than something like paypal.com.

In a CSRF attack, the cross-site request happens automatically. There is no

Midterm 1 Page 8 of 18 CS 161 – SP 17

opportunity for Alice to protect herself by inspecting the URL of the page she
loaded.

In reflected XSS, the user clicks on a link that will reflect a script off of a target
web server. However, until Alice clicks on the link (at which point it’s too late),
all she will see in the URL bar is the name of the page that includes the link,
such as evil.com.

SQL injection attacks target servers rather than browsers. Alice would only
observe one if for some reason an attacker decided to launch it through her
browser. Even so, she would not see anything in the URL itself that would
enable her to prevent the attack; she might be able to tell after the attack
occurs that a suspicious URL was loaded.

In stored XSS, if Alice has not yet visited the part of target.com that includes
the attacker’s stored script (which is what is required for her to prevent the
attack, as opposed to detect it), she will not observe any indication of the
threat in the URL bar.

Midterm 1 Page 9 of 18 CS 161 – SP 17

Problem 3 Reasoning About Memory Safety (58 points)
Consider the following code:

1 /∗ Copy n c h a r a c t e r s from src i n t o d s t s t a r t i n g at
2 ∗ d s t ’ s s t a r t a t ’ th c h a r a c t e r .
3 ∗/
4 void copy at (char ∗dst , char ∗ src , int n , int s t a r t a t) {
5 for (int i = 0 ; i < n ; i++) {
6 dst [i + s t a r t a t] = s r c [i] ;
7 }
8 }

(a) (12 points) Write down a precondition that must hold at line 6 to ensure memory
safety.

Solution:

Requires: src != NULL && dst != NULL &&

0 <= i < size(src) &&

0 <= i + start_at < size(dst)

Note that here i + start_at is referring to C arithmetic, not to mathematical
arithmetic. The difference is important because the former includes the possi-
bility of overflow. (The simpler constraint of 0 <= start_at does not suffice,
since i + start_at could overflow.)

An equivalent solution—a bit more clunky but also more explicitly clear—
would be to add ... && i + start_at <= MAXINT, with the understanding
that MAXINT denotes the largest representable signed integer.

Also note that simply stating “src and dst are valid pointers” does not suffice,
because a NULL pointer is a valid pointer. We mentioned in lecture that for
simplicity we often leave out the term “. . . is a valid pointer” when talking about
pointers, as done in the solution above.

One minor error is to misphrase the statement that the pointers must not be
NULL, such as using *src != NULL.

Some students used strlen() to express size constraints on src and dst. This
is not quite correct, because the function does not only apply to C strings but
also arrays of bytes (which are also defined in C using char*); nothing in the
function relies on NUL-termination of strings, and in fact the code will continue
beyond a NUL if one is present. Finally, strlen() could itself introduce a
memory-safety issue if in fact the string is not properly NUL-terminated. (One
could address that fact by stating that the precondition requires src and dst

to be “well-formed strings”.)

Midterm 1 Page 10 of 18 CS 161 – SP 17

In preconditions and the like, the proper way to refer to the size of the memory
region pointed to by a pointer X is size(X). Some students used sizeof(X);
this actually has a different meaning, but we allowed it because we felt it was
clear the student understood the concept they wanted to convey. We similarly
allowed len(X), which is not a term we’ve used in a memory-safety context,
but whose intended meaning was clear.

(b) (16 points) Write down a precondition that must hold when the function is called
to ensure memory safety. As usual, your precondition should not unduly constrain
the operation of the function.

Solution:

Requires: src != NULL && dst != NULL &&

n <= size(src) &&

0 <= start_at && 0 <= n + start_at <= size(dst)

We can determine the elements of the function’s precondition by inspecting
what we will need to support the memory-safety precondition in the previous
part.

Here again we use C arithmetic for the term n + start_at. We could replace
the term with n + start_at <= MAXINT.

A common minor mistake here was to introduce some form of “fencepost” error,
such as using n < size(src) instead of n <= size(src). Such errors slightly
constrain the operation of the function.

(c) (15 points) Write down an invariant that always holds just before line 6. You can
assume that the precondition you specified in part (b) is true when the function is
called. For simplicity, you can omit from your invariant any terms that appear in
the precondition from part (b) that will be true throughout the execution of the
function.

Your invariant should allow you to establish that the precondition you stated in
part (a) will then also be true.

Solution:

Invariant: src != NULL && dst != NULL &&

0 <= i < n <= size(src) &&

0 <= i + start_at < n + start_at <= size(dst)

Most of these terms appear in the function’s precondition, and none of the
variables in the precondition change during the execution of the function. So

Midterm 1 Page 11 of 18 CS 161 – SP 17

you could write this invariant as simply:

Invariant: 0 <= i < n && 0 <= i + start_at < n + start_at

and in fact the second clause immediately follows from the first clause (by adding
start_at to both sides of i < n — which is sound because our invariant in (b)
establishes that n + start_at does not overflow), so a solution of:

Invariant: 0 <= i < n

also suffices. That invariant immediately follows from the loop’s initialiation
and iteration condition.

Again, i + start_at refers to C arithmetic, as discussed above.

A common mistake here was to write an invariant in terms of n rather than i.
Such invariants do not allow us to prove that the memory-safety precondition
(from part (a)) holds.

(d) (15 points) Write down an invariant that always holds just after line 6 executes
(but before the loop iterates). The same as for part (c), you can omit terms from
part (b)’s precondition if they will be true throughout the execution of the function.

Your invariant should allow you to establish that your invariant in part (c) will
always hold when the loop iterates.

Solution: This is the same as in part (c). Line 6 does not alter the value of
any of the variables in that invariant.

A common small mistake here was to update (c)’s invariant to reflect i having
undergone the increment listed at line 5. The phrase “just after” specifically
indicates that nothing further has executed other than line 6, as does the term
“Before the loop iterates”, because loops “iterate” by applying their increment
operation and then checking the guard condition.

Midterm 1 Page 12 of 18 CS 161 – SP 17

Problem 4 Browser Security (56 points)
Neo has decided to build a new web browser, BerkBrowser, which mimics the design
of the Chromium web browser. BerkBrowser works by splitting the browser into two
separate processes:

1. A renderer process, which is in charge of processing a website’s code and resources
(HTML, CSS, Javascript, images, videos) to generate the webpage’s DOM and to
then display the webpage’s content to the user. It is also responsible for enforcing
the Same Origin Policy (SOP).

2. A kernel process, which is in charge of managing the browser’s persistent state
(cookies, bookmarks, passwords, downloads) and mediating access to the user’s
local file system (e.g., downloads and uploads).

When a user visits a website using BerkBrowser, the renderer process parses and displays
the webpage to the user. As the website’s code makes various requests, the renderer per-
forms SOP checks and allows/denies the actions as appropriate. Under this architecture,
the renderer process cannot access the user’s local filesystem, and must communicate
with the kernel process via a small and bug-free API in order to access files on the user’s
machine. If a website wants the user to upload a file, the renderer will send an API call
to the kernel process, which will display a dialogue window where the user can either
choose to close the window (not upload anything), or select a file to upload. If a user
needs to download a file from a website, the renderer will send an API call to the kernel
process, which will display another dialogue window to the user that asks if the user
would like to accept or reject the download. If the user accepts, the file is downloaded
into the browser’s Downloads folder. If the user rejects, the file download is blocked.

For parts A and B, mark your multiple choice answer and then write a one-sentence
explanation in the space below each question.

For part C, write your answer in the space below the question; keep your response ≤ 4
sentences.

(a) (16 points) Mark ONE of the following security principles that best describes the
BerkBrowser’s architecture.

Consider Human Factors

Detect If You Can’t Prevent

Don’t Rely On Security Through Obscurity

Least Privilege Principle

Use Fail-Safe Defaults

Midterm 1 Page 13 of 18 CS 161 – SP 17

Solution: The renderer process is given a restricted set of capabilities; it cannot
access the user’s local filesystem/data without asking the kernel process for
permission. This reflects a Least Privilege design.

Some students argued that the emphasis on dialog boxes in the discussion of
BerkBrowser’s architecture reflected Consider Human Factors. While there’s
some modest merit to that argument, such answers only received partial credit,
since the best answer is the one that goes to the heart of the architecture,
namely the privilege-separated design.

(b) (20 points) Mark ALL of the following web attacks that this architecture is pri-
marily designed to mitigate.

XSS Attacks

SQL Injection

Phishing

Drive-by Malware

CSRF

Solution: If the renderer is compromised, an attacker still cannot read/write/ex-
ecute files on the user’s local machine (assuming the kernel process isn’t also
exploited). All of the other attacks are possible if the renderer is compromised,
since they do not rely on altering the browser’s execution.

(c) (20 points) Suppose that Bob is using the BerkBrowser to surf the web. He visits his
banking website, makes some transactions, but does not log out afterwards, so his
cookie does not expire. He then navigates his browser to his favorite news website,
but accidentally clicks on an ad that takes him to evil.com. This malicious website
manages to exploit a vulnerability in the renderer process that allows evil.com to
completely compromise and control the renderer, but not the kernel process.

Can the malicious website cause transactions to occur from Bob’s bank account? If
your answer is Yes, briefly describe how the attack would work. If your answer is
No, explain why BerkBrowser’s architecture prevents this attack.

Yes No

Explanation:

Midterm 1 Page 14 of 18 CS 161 – SP 17

Solution: The renderer process is compromised, so the attacker can arbitrarily
get around the Same Origin Policy protections.

Two weaker forms of attack appeared frequently in student answers. In the first,
the attacker uses their position inside the browser to set up situations that fool
the user in some fashion into taking an action the user doesn’t intend. While
such an attack will work, it misses the key notion that the attacker has the
power to directly issue Web requests, and thus no need to try to trick the user
into issuing them, so this answer received only partial credit.

In the second, the answer posits that the web server of Bob’s bank has some
vulnerability which the attacker then leverages. These answers received only a
small amount of credit, as they lack the core notion that the attacker has gained
a powerful vantage point by compromising the renderer process.

Midterm 1 Page 15 of 18 CS 161 – SP 17

Problem 5 I don’t think you heard me . . . (60 points)
Assume the code below has been compiled to use randomized stack canaries, and is run
with data execution prevention (e.g., DEP), and ASLR applied to the stack segment.
ASLR is not applied to other memory regions.

How might an attacker exploit a vulnerability in this code to execute the command
“/bin/rm -R /home/enemy/*”, deleting all of the files of user “enemy”?

/* DEP will be enabled! :o */

void run(char* cmd) {

system(cmd);

}

void print_twice_the_fun(char* x) {

printf("%s %s\n", x, x);

}

int main() {

// random unpredictable stack canary will be used!

char first[32];

void (*printfn)(char*);

char second[4];

printfn = &print_twice_the_fun;

gets(first);

gets(second);

printfn(first);

}

Use the following assumptions:

1. The server is on an IA-32 platform with 4-byte words (recall it’s also little endian).

2. The stack is aligned at word granularity.

3. Local variables of each function are placed on the stack in the order they appear
in the source code.

4. The address of the first instruction of the run function is 0x11111110.

5. The address of the first instruction of the print twice the fun function is 0x11111250.

6. The address of the first instruction of the main function is 0x11111500.

7. A randomized stack canary protects the main function’s RIP.

8. Data execution prevention is enabled.

9. ASLR is enabled for the stack segment.

Midterm 1 Page 16 of 18 CS 161 – SP 17

Answer the following:

(a) (30 points) For each defense mechanism below, describe why the code is still vulnerable
even using this defense.

1. Randomized stack canary

Solution: Stack canaries do not protect local variables, rather they protect
the RIP. In particular, this code has a function pointer that is a local
variable in main. This function pointer will not be protected by stack
canaries and is later called within main, meaning it can be overwritten
with a buffer overflow and executed.

Note that the problem asks for why the given code remains vulnerable; not
for weaknesses in the defense in general. Thus, to earn at least partial credit
an answer had to convey the relevance to the particular code. Only listing
general defense weaknesses did not suffice for partial credit.

Also, there was ambiguity regarding whether for this question one should
analyze each defense in isolation, or issues with it given that the other two
defenses were also in use. We intended the latter, but constructed a grading
rubric that provided potentially full credit for either interpretation.

2. DEP

Solution: DEP marks memory pages as writeable but not executable, or
executable but not writable. This indicates that anything (such as the
stack) which the attacker might be able to inject code into will not be exe-
cutable, so instead the attacker must use existing code (which is executable
already). This code is vulnerable because the function pointer can be over-
written to point to any existing code, such as the run function, which will
be allowed to execute under DEP.

3. ASLR on the stack

Solution:

ASLR on the stack means memory addresses for things on the stack will be
unpredictable. However, the layout of other memory regions, notably the
TEXT segment, will not be randomized. This indicates that existing code,
such as the function run, will be at deterministic and predictable locations,
since they reside in the TEXT segment. Thus with this code, an attacker
can overwrite the function pointer to execute the run function. In addition,
the run function already accepts the first buffer as an input, so the chosen
command string can simply be supplied as the first gets input, without

Midterm 1 Page 17 of 18 CS 161 – SP 17

needing to fiddle with the address of anything on the stack.

(b) (30 points) Give inputs (for both the first and second calls to gets) that an attacker
could provide corresponding to a successful attack. You should indicate any hex
characters such as 0xff (i.e., a single byte with value 255) by writing them between
vertical bars, for example: “|0xff|”. So if you want to indicate the attacker inputing
3 ‘A’s followed by two 0x8d characters, you would write “AAA|0x8d|0x8d|”. You
do not need to indicate the newline that terminates each line.

i. First input:

Solution: Any value you wish, as it will be irrelevant.

ii. Second input:

Solution: “aaaa|0x10|0x11|0x11|0x11|/bin/rm -R /home/enemy/*”, where
“aaaa” is any arbitrary 4 characters.

Note if you to set up the “/bin/rm” command in the first input, the gets
call for the second input will overwrite a character when NUL-terminating,
which will mess up your command passed to system(). So the entire exploit
should happen in the second input.

It was very common for answers to overlook this NUL-termination issue.
Answers that were fully correct other than for this consideration received
close to full credit.

Midterm 1 Page 18 of 18 CS 161 – SP 17

