NAME:

ID \# :

$\# 1$	$\# 2$	$\# 3$	$\# 4$	$\# 5$	$\# 6$	$\# 7$	TOTAL
8							

Instructions:

1 Write your name and student ID number.
2 Read the questions carefully.
3 This exam has 7 questions worth 76 points.
4 Please write your solution clearly.

Problem \# 1 ($1 \times 8=8$ points $)$
For each statement, state whether the claim is True or False.
Circle you answer. No explanation is necessary.
-1 points for incorrect answers so guessing is not advised.
1 \qquad First-order linear systems can have an oscillatory free-response.

2 \qquad If two square matrices A and B have the same eigenvalues, then $A=B$.

3 \qquad Proportional control can always stabilize a first-order LTI plant.

4 True or False Anti-wind up strategies are needed when using pure proportional control.

5 True or False If you have a bad plant model, feedback linearization is a bad idea.

6 True or False Increasing the proportional gain k_{p}, reduces the time constant.
7 True or False Suppose the realization $\Sigma(A, B, C, D)$ is stable.. Then A is invertible.
8 True or False The steady-state response of a stable linear system due to a sinusoidal $\begin{aligned} & \text { input depends on the initial conditions. }\end{aligned}$

Problem \# $2(2+2+2+3+3+3=15$ points $)$
(a) Give any two reasons why state-space methods are very powerful.
Reason 1:

Reason 2:
(b) What is the single most important reason to use integral control?

Answer:
(c) When should we use anti-windup control strategies?

Answer:
(d) Find the eigenvalues of the matrix

$$
A=\left[\begin{array}{lll}
p & 1 & 0 \\
0 & q & 0 \\
1 & 1 & r
\end{array}\right]
$$

$\lambda_{1}=$
$\lambda_{2}=$

$$
\lambda_{3}=
$$

(e) Calculate $\sin (A)$ for the matrix

$$
A=\left[\begin{array}{cc}
\pi & 100 \\
0 & 2 \pi
\end{array}\right]
$$

Answer:

(f) Find the DC gain matrix of the transfer function

$$
P(s) \sim\left[\begin{array}{cc|ccc}
-1 & 0 & 1 & 1 & 0 \\
0 & -1 & 0 & 1 & 1 \\
\hline 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Problem \# 3 ($4+4+4=12$ points)
(a) Consider the feedback system shown below.

For what values of k is this feedback system stable?
Answer:
(b) Consider the plant with transfer function

$$
H(s)=\frac{s^{2}+c s+d}{s^{2}+4 s+4}
$$

We apply the input $u(t)=\sin (2 t)$. The steady-state response is zero. Find c and d.

(c) Consider the feedback system shown below

Find the transfer function from u to y.
Answer:

Problem \# $\mathbf{4}$ (12 points)
Below are 6 different realizations.
A. $\left[\begin{array}{cc|c}0 & 1 & 0 \\ -8 & -2 & 1 \\ \hline 8 & 0 & 0\end{array}\right]$
B. $\left[\begin{array}{c|c}-1 & 1 \\ \hline 1 & 0\end{array}\right]$
C. $\left[\begin{array}{cc|c}0 & 1 & 0 \\ -2 & -2 & 1 \\ \hline 2 & -4 & 0\end{array}\right]$
D. $\left[\begin{array}{cc|c}0 & 1 & 0 \\ -64 & -8 & 1 \\ \hline 64 & 0 & 0\end{array}\right]$
E. $\left[\begin{array}{l|l}-1 & 1 \\ \hline-1 & 0\end{array}\right]$
F. $\left[\begin{array}{cc|c}0 & 1 & 0 \\ -2 & -2 & 1 \\ \hline 0 & 1 & 0\end{array}\right]$

The unit-step response, starting from zero initial conditions at $t=0$ for these models are shown on the next page. Match these step responses with the models by entering the letters \mathbf{A} through \mathbf{F} in the boxes provided.

No partial credit. No explanations are necessary.
Correct answers get 2 points, incorrect answers get -1 points.

1.	4.
2.	5.
3.	6.

Step Response

Step Response

Step Response

Problem \# 5 (5+5 = 10 points)

Please show your work to receive full credit.
(a) Consider the feedback system shown below.

Find a realization for the transfer function $H(s)$ from u to y, i.e. find matrices A, B, C, D such that

$$
H(s) \sim\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]
$$

Use the state variables

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

where x_{1} and x_{2} are the signals shown.

(b) Consider the feedback system shown below.

Suppose $K(s)$ has state-space realization

$$
K(s) \sim\left[\begin{array}{c|c}
F & G \\
\hline H & 0
\end{array}\right]
$$

Compute any state space realization for the transfer function $H(s)$ from u to y, i.e. find matrices A, B, C, D such that

$$
H(s) \sim\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]
$$

$A=$	$B=$	$C=$	$D=$

Problem \# 6 $(2+2+2+2=8$ points $)$
Consider the LTI system with input u and output y modeled by

$$
y(t)=u(t-2)
$$

(a) Find the transfer function $H(s)$ from u to y.
(b) Plot the unit step response.
(c) Plot the magnitude frequency response of $H(s)$.
(d) Plot the phase frequency response of $H(s)$.

Use the graph sheets provided below.
To make it easier, the scales are linear (not log-frequency or decibels).
No partial credit. No explanations are necessary.

\square

Problem \# 7 (12 points)
For what values of g is the feedback system shown below stable?
Your answer should be in the form

$$
g_{\min }<g<g_{\max }
$$

