Chemistry 1A

Midterm Exam #1 Tuesday, September 18, 2018

Name: ______

GSI Name: _____

Write your name on all the pages of the exam.

For multiple choice questions, fill in the bubble (\bigcirc) completely.

Multiple choice questions have only one correct answer.

For short-answer questions, answers outside the boxes provided will not be graded.

Potentially helpful equations and fundamental constants:

$$\Delta E = E_{\text{photon}}$$

$$E_{\text{photon}} = \Phi + K$$

$$K = \frac{1}{2}mv^{2}$$

$$E = hv$$

$$-\frac{\hbar^{2}}{2m}\frac{d^{2}}{dx^{2}}\psi(x) + V(x)\psi(x) = E\psi(x)$$

$$\lambda = \frac{h}{mv} = \frac{h}{p}$$

$$K \approx \frac{h^{2}}{2m\lambda^{2}}$$

$$E = -\frac{Ry}{n^{2}}Z^{2}$$

$$\ell = 0(s), 1(p), \dots, n-1$$

$$m = -\ell, \dots, 0, \dots, \ell$$

$$m_{s} = \pm \frac{1}{2}$$

$$1\text{\AA} = 10^{-10} m = 0.1 nm$$

 $\frac{10^{24} \text{¢}}{10^{10} \text{ people}} = \text{a trillion bucks per person}$

$$1 \text{ amu} = 1 \frac{g}{\text{mol}}$$

 $V = -\frac{k_{\rm C}e^2}{R}$ $k_{\rm C} = \frac{1}{4\pi\varepsilon_0} \approx 9.9 \times 10^9 \frac{J \cdot m}{C^2}$ $\hbar = \frac{h}{2\pi}$ $a_0 = \frac{\hbar^2}{k_{\rm C} m_e e^2} \approx 0.5 \,\text{\AA}$ # nodes = n - 1# angular nodes = ℓ $[Ne] = 1s^2 2s^2 2p^6$ $hc = 1.2 \times 10^5 nm \frac{kJ}{mol}$ $c = \lambda v$ $N_{\rm A} \approx 6 \times 10^{23}$ $Ry \approx 2 \times 10^{-18} J \approx 1300 \frac{kJ}{\text{mol}}$ $h \approx 6.6 \times 10^{-34} J \cdot s$ $m_e \approx 9 \times 10^{-31} kg$ $c \approx 3 \times 10^8 \frac{m}{s}$

Color and Wavelength of Light

grains of sand on earth $\approx 10^{18}$

HAYDEN		ALKALI METALS	87 223.02 Franchum	55 132.91 Cestium	Rb 37 85,47 Publidium	19 39.10 Potassium	11 11 22.99 Sodlum	3 6.94 Linham	1.01 Hydrogen
		ALKALI EARTH METALS	Ra 88 226.03 Padium	Ba 56 137.33 Baium	38 87.62 Strontsum	20 40.08 Calcium	Mg 12 24.31 Magnesium	4 9.01 Baryikam	ΠA
	-		AC 89 227.03 Actinium	La 57 138.91 Lanthanun	39 88.91	21 21 44.96 Seandium	IIIB		
ACTINIDES	ANTHANIDES		104 (261) Rutestreture	H ff 72 178.49 Habuum	40 91.22 Zheonum	Ti 22 47.88 Titanum	IVB	1 1.008 Hydrogen	
90 232.04 Thorium	58 140.12		105 (262) Dutonium	Ta 73 180.95 Tantalem	41 92.91 Noticen	23 50.94 Vanadium	VB	ATO	1
Pa 91 231.04 Protacinium	59 140.91		588 106 (263) Seuborgium	74 74 183.85	42 95.94 Mohademura	24 52.00 Cheonium	VIB	IBOL MIC NUME MIC WEIGI	
92 238.03	80 144.24		86 107 (262) Botmium	75 186.21 Phonesam	43 (87.9) Technotium	Mn 25 54 94 Mangunetes	VIIB	HT (HE
Np 93 237.05	Pm 61 (145)		HS 108 (265) Hassium	Os 76 190.2 Dammen	44 101.07 Retrievent	26 55.85	h) = ESTIN	PE
Pu 94 (240)	52 150.36		109 (266) Methanium	192.22 Villaum	45 102.81 Finodeum	27 58.93 Coeut	VIIIB	AATES	KIO
Am 95 243.06 American	Eu 152.97		Unsured Discovery 110 Nov 1934	78 195.08	46 106.42 Palaston	28 58.69 Notest	J		
96 (247)	64 157.25		Unrugened Discovery 111 Nov 1954	Au 79 197.97 6ed	Ag 47 107.87 Sloet	29 53.55 Cu	IB	METALLOII NONMETA	, IA
97 97 (248)	65 158.93		Unnamed Discovery 112 1996	Hg 300.59 Mercury	48 112.41 Cadmaam	30 55.39	IB		BLE
98 (251) Californium	Dy 66 162.50			81 204.38 Thatlum	49 114.82 Indem	Ga 31 69.72 Ballum	13 26.98	B 10.81	IIIA
Es 99 252.08 Enstenium	Ho 67 164.93 Holmium		Uenamod Discovery 114 1999	82 207.2 Land	50 118.71	Ge 32 72.61 Germanium	14 14 Silicon	6 12.01 Carbon	IVA
100 100 257.10	68 167.26			Bi 83 208.98 Biamuth	51 121.76 Antimony	AS 33 74.92 Arsenic	15 30.97 Phusphores	7 14.01 Nitrogen	VA
101 (257) Mendelandura	69 168.93 Thuttam		Unnamed Discovery 116 1999	Po 84 (209) Polonium	52 52 127.50 Telurism	34 34 78.96 Selenium	16 32.07 Suthur	8 16.00 Daygen	VIA
102 102 259.10 Nobelium	70 173.04 Vtterbium	HALOGENS		85 (210) Astatine	53 126.90 Iodine	35 79.90 Bromise	17 17 35.45 Chlonice	- 9 19.00 Fussine	VIIA
103 262,11	T1 71 174.97	NOBLE GASES	Unnamed Discovery 118 1999	86 (222) Fadon	54 131.29 Xenon	36 83.80 Krypten	18 39.95 Argon	10 20.18 Neon	He 2 4.00 Hallum

C Hayden-McNeil Specialty Products

Name______ SID______

Page **3** of **10**

- **1)** Light irradiates a metal surface and ejects an electron. Compare the energy E_{photon} of the incoming photon to the kinetic energy K_{electron} of the ejected electron.
 - C Ephoton > Kelectron
 - \bigcirc E_{photon} = K_{electron}
 - \bigcirc E_{photon} < K_{electron}
 - \bigcirc Not enough information
- 2) A compound strongly absorbs light between 300-650 nm. Light is transmitted between 650 -750 nm. What color is the compound?
 - O Blue
 - Green
 - O Yellow
 - O Red
- 3) Rank the following objects in order of their de Broglie wavelength (smallest to greatest).
 - \bigcirc 3 m/s baseball < 30 m/s baseball < 10² m/s electron < 10⁴ m/s electron
 - \bigcirc 30 m/s baseball < 3 m/s baseball < 10⁴ m/s electron < 10² m/s electron
 - \bigcirc 10² m/s electron < 10⁴ m/s electron < 3 m/s baseball < 30 m/s baseball
 - \bigcirc 3 m/s baseball < 10² m/s electron < 30 m/s baseball < 10⁴ m/s electron

4) Ozone molecules (O_3) can react with oxygen atoms (O) to produce diatomic oxygen (O_2) .

i. Write a balanced reaction equation for this process.

The destruction of ozone is much more rapid in the presence of chlorine atoms, through a sequence of reactions

$$Cl + O_3 \rightarrow ClO + O_2$$

$$ClO + O \rightarrow Cl + O_2$$

Consider a mixture that initially contains no O₂, no ClO, and the following masses of Cl, O₃, and O:

> 18 g Cl 48 g O₃ 32 g O

How many moles of Cl, O₃, and O are initially present? (Only one significant figure is ii. needed for each species.)

Final Answer
Final Answer
Final Answer
Final Answer Cl
Final Answer Cl
Final Answer Cl
Final Answer Cl O ₃
Final Answer Cl O ₃
Final Answer Cl O ₃
Final Answer Cl O ₃ 0

How many oxygen nuclei are initially present? (Your answer should be a number with no iii. units.)

Final Answer

If the sequence of reactions proceeds as far as possible, which molecule or atom is the iv. limiting reagent? Explain your reasoning.

v. What is the system's total mass at the end of the reaction?

_____ Final Answer

5) The diagram below shows the allowed energy levels of a certain molecule.

i. A transition from n = 2 to n = 1 is accompanied by emission of a photon with wavelength $\lambda = 600$ nm, as shown in the energy level diagram. Using this information, calculate the value of E_0 in units of kJ/mol.

ii. When the molecule is in its ground state (n = 1), only certain colors of light can be absorbed. On the graph below sketch its absorption spectrum as a function of wavelength λ . Consider only transitions that begin from n = 1.

iii. A different substance has many more energy levels in the range between $E = -E_0$ and E = 0, as shown below.

Considering only transitions that begin from n = 1, sketch the absorption spectrum of this substance on the graph below. (You may assume that excited states are so numerous that the spectrum is very smooth.)

iv. Based on the absorption spectrum you drew in part (iii), describe the appearance of this substance to the eye.

6) Consider an electron in a potential energy V(x) described by 4 different wavefunctions as shown in panels (a), (b), (c), and (d):

Figure 1: The potential energy (V(x)) is shown by the dotted curve and the electron wavefunction $(\psi(x))$ by the solid curve.

i. For each panel (b), (c), and (d) in Figure 1, where on the x-axis is the most probable location to find the electron? Explain your answer.

ii. Which wavefunction (or wavefunctions) has the highest kinetic energy? Please reason your answer.

iii. Which wavefunction (or wavefunctions) has the lowest kinetic energy? Please reason your answer.

iv. Which wavefunction (or wavefunctions) has the highest potential energy? Please reason your answer.

Which wavefunction (or wavefunctions) has the lowest potential energy? Please reason ٧. your answer.

vi. True or false: For panel (a) in Figure 1, the probability of finding the electron in x < 0 is smaller than the probability of finding the electron in x > 0 because the wavefunction for x < 0 is negative. Explain your answer.

OTrue	Explain:
◯ False	