MATH 54 FINAL EXAM (PRACTICE 1) PROFESSOR PAULIN

\qquad
\qquad

This exam consists of 10 questions. Answer the questions in the spaces provided.

1. (25 points) (a) Let $A=\left(\begin{array}{cccccc}1 & -1 & -1 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 & -1 & 1 \\ -1 & 1 & 0 & 0 & 0 & 1\end{array}\right)$. Find a general solution to the homogeneous linear system with coefficient matrix A.
Solution:

(b) What is $\operatorname{Nullity}\left(T_{A}\right)$? What is $\operatorname{Rank}\left(T_{A}\right)$?

Solution:
$\operatorname{Rank}\left(T_{A}\right)+\operatorname{Nalit} y\left(T_{A}\right)=6$
Nullity $\left(T_{A}\right)=3 \Rightarrow \operatorname{Rank}\left(T_{A}\right)=3$
2. (25 points) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation such that

$$
T\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right), T\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right), T\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right)
$$

Find the standard matrix of T. Is T one-to-one?
Solution:

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
2 & -1 & 1 & 0 & 1 & 0 \\
-1 & 1 & 1 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & -1 & -1 & -2 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & -1 & -1 & -2 & 1 & 0 \\
0 & 0 & 1 & -1 & 1 & 1
\end{array}\right) \\
& \downarrow \\
& \left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 2 & -1 & -1 \\
0 & 1 & 0 & 3 & -2 & -1 \\
0 & 0 & 1 & -1 & -1 & 1
\end{array}\right) \leftarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 2 & -1 & -1 \\
0 & -1 & 0 & -3 & -1 \\
0 & 0 & 1 & -1 & 1 & 1
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=2\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)+3\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)+(-1)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& \left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=(-1)\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)+(-2)\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)+1\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& \left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=(-1)\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)+(-1)\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)+1\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \\
& \left.\Rightarrow T\left(\underline{e}_{1}\right)=2\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)+3\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)+(-1)\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right)\right\rangle \\
& T\left(e_{2}\right)=(-1)\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)+(-2)\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)+1\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right) \quad \Rightarrow A=\left(\begin{array}{lll}
7 & -5 & -4 \\
7 & -4 & -3 \\
5 & -3 & -1
\end{array}\right) \\
& \left.T\left(\ell_{3}\right)=(-1)\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)+(-1)\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)+1\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right)\right) \\
& \left(\begin{array}{ccc}
7 & -5 & -4 \\
7 & -4 & -3 \\
5 & -3 & -1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
\square & 0 & 0 \\
0 & \square & 0 \\
0 & 0 & 1
\end{array}\right) \Rightarrow \begin{array}{l}
\text { T one-to-one } \\
\text { PLEASE TURN OVER }
\end{array}
\end{aligned}
$$

3. (25 points) Let A be a 4×3 matrix and B be a 3×2 matrix. Show that if the columns of A and B are linearly independent then the columns of $A B$ are linearly independent. Hint: Consider the linear transformations associated to these matrices.

Solution:
Recall that given a matrix C, columbus at C are L.I.
\Leftrightarrow TC one-to-oue.

$$
\Rightarrow T_{A} 0 \frac{C}{B}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4} \quad \text { one-to-one }
$$

$$
\Rightarrow \frac{T_{A B}}{\prime \prime} \text { one-to-one } \Rightarrow \text { Columns A } A B \text { are L.I. }
$$

4. (25 points) Let V be a vector space with bases $B=\left\{\underline{\mathbf{b}}_{1}, \underline{\mathbf{b}}_{2}, \underline{\mathbf{b}}_{3}\right\}$ and $C=\left\{\underline{\mathbf{c}}_{1}, \underline{\mathbf{c}}_{2}, \underline{\mathbf{c}}_{3}\right\}$, where

$$
\underline{\mathbf{c}}_{1}=\underline{\mathbf{b}}_{1}-\underline{\mathbf{b}}_{2}, \quad \underline{\mathbf{c}}_{2}=\underline{\mathbf{b}}_{1}+\underline{\mathbf{b}}_{3}, \quad \underline{\mathbf{c}}_{3}=\underline{\mathbf{b}}_{1}+\underline{\mathbf{b}}_{2}+\underline{\mathbf{b}}_{3}
$$

If $(\underline{\mathbf{x}})_{B}=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$, what is $(\underline{\mathbf{x}})_{C}$?
Solution:

$$
\begin{aligned}
& P_{B \in C}=\left(\left(\underline{c}_{1}\right)_{B}\left(\underline{c}_{2}\right)_{B}\left(\underline{c}_{3}\right)_{\beta}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right) \\
& \left(\begin{array}{ccc|ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll|lll}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 2 & 1 & 1 & 0 \\
0 & 0 & -1 & -1 & -1 & 1
\end{array}\right) \\
& \downarrow \\
& \left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & -1 & -1 & 2 \\
0 & 0 & 1 & 1 & 1 & -1
\end{array}\right) \longleftarrow\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & -1 & -1 & 2 \\
0 & 0 & -1 & -1 & -1 & 1
\end{array}\right) \leftarrow\left(\begin{array}{ccc|ccc}
1 & 1 & 0 & 0 & -1 & 1 \\
0 & 1 & 0 & -1 & -1 & 2 \\
0 & 0 & -1 & -1 & -1 & 1
\end{array}\right) \\
& P_{C \in \beta}=\left(P_{\beta \in C}\right)^{-1} \Rightarrow P_{C \in \beta}=\left(\begin{array}{ccc}
1 & 0 & -1 \\
-1 & -1 & 2 \\
1 & 1 & -1
\end{array}\right) \\
& \Rightarrow(x)_{C}=P_{c \leftarrow 1}(\underline{x})_{B}=\left(\begin{array}{ccc}
1 & 0 & -1 \\
-1 & -1 & 2 \\
1 & 1 & -1
\end{array}\right)\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{c}
2 \\
-4 \\
3
\end{array}\right)
\end{aligned}
$$

5. (25 points) Give an example of a non-diagonalizable matrix with only real eigenvalues. Carefully justify your answer.
Solution:

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
& \operatorname{det}\left(A-x I_{2}\right)=\operatorname{det}\left(\begin{array}{cc}
1-x & 1 \\
0 & 1-x
\end{array}\right)=(1-x)^{2}=0 \Rightarrow x=1 \\
& \operatorname{Nul}\left(A-1 I_{2}\right)=\operatorname{Nul}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\operatorname{span}\left(\binom{1}{0}\right) \\
& \Rightarrow \quad \operatorname{dim}(1 \text {-eigerppaei })=1<2=\text { algolvarc maltipucits }+1 \\
& \Rightarrow \quad\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { not diagondizable }
\end{aligned}
$$

6. (25 points) Compute the minimum distance between $\left(\begin{array}{c}1 \\ 0 \\ -1 \\ 0\end{array}\right)$ and

$$
N u l\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
3 & 6 & 9 & 12 \\
2 & 4 & 6 & 8
\end{array}\right)
$$

Solution:

$$
\begin{aligned}
& W=\operatorname{Nu}\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 6 & 4 \\
2 & 4 & 4 & 8
\end{array}\right) \Rightarrow W^{\perp}=C_{0} 1\left(\begin{array}{ccc}
1 & 3 & 2 \\
2 & 0 & 4 \\
3 & 6 & 6 \\
4 & k & 9
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 3 & 2 \\
& 6 & 4 \\
4 & 6 \\
4 & 6 & 9
\end{array}\right) \rightarrow\left(\begin{array}{llll}
0 & 3 & 2 \\
0 & 0 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \Rightarrow \quad w^{\perp}=s_{p a n}\left(\begin{array}{c}
1 \\
2 \\
4 \\
4
\end{array}\right) \\
& \operatorname{Proj} w+\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right) \\
& \overline{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)}\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)=\frac{-2}{30}\left(\begin{array}{l}
1 \\
2 \\
4 \\
4
\end{array}\right) \\
& \Rightarrow \quad \text { Min distance }=\left\|\operatorname{Proj} \omega^{+}\left(\begin{array}{c}
1 \\
\frac{1}{0} \\
0
\end{array}\right)\right\|=\frac{1}{1 s} \sqrt{30}
\end{aligned}
$$

7. (25 points) Perform a singular-value decomposition of the matrix

$$
\left(\begin{array}{ll}
1 & 2 \\
1 & 2 \\
1 & 2
\end{array}\right)
$$

Solution:

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
1 & 2 \\
1 & 2 \\
1 & 2
\end{array}\right) \Rightarrow A^{\top} A=\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
1 & 2 \\
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
3 & 6 \\
6 & 12
\end{array}\right) \\
& \operatorname{det}\left(A^{\top} A-x I_{2}\right)=(3-x)(12-x)-36=x^{2}-15 x \\
& \Rightarrow \lambda_{1}=15, \lambda_{2}=0 \quad \Rightarrow \quad \sigma_{1}=\sqrt{15}, \sigma_{2}=0 \\
& \operatorname{Nal}\left(A^{\top} A-15 I_{2}\right)=\operatorname{Nal}\left(\begin{array}{cc}
-12 & 6 \\
6 & -3
\end{array}\right)=\operatorname{span}\binom{1}{2} \\
& \operatorname{Nal}\left(A^{\top} A-0 I_{2}\right)=\operatorname{Nal}\left(\begin{array}{cc}
3 & 6 \\
6 & 12
\end{array}\right)=\operatorname{Spar}\binom{-2}{1} \\
& \underline{v}_{1}=\binom{1 / \sqrt{5}}{2 / \sqrt{5}}, \quad \underline{v}_{2}=\binom{-2 / \sqrt{5}}{1 / \sqrt{5}} \\
& \Rightarrow \quad \underline{u}_{1}=\frac{1}{\sigma_{1}} A \underline{u}_{1}=\frac{1}{\sqrt{15}}\left(\begin{array}{ll}
1 & 2 \\
1 & 2 \\
1 & 2
\end{array}\right)\binom{1 / \sqrt{3}}{\frac{2}{\sqrt{3}}}=\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right) \\
& \operatorname{Nul}\left(A^{\top}\right)=\operatorname{Nul}\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right)=\operatorname{Nul}\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \\
& =\operatorname{Span}\left(\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)\right)
\end{aligned}
$$

Solution (continued) :

$$
\begin{aligned}
& \left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)-\frac{\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)}{\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)-\frac{1}{2}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) \\
& =\left(\begin{array}{c}
-1 / 2 \\
1 \\
-1 / 2
\end{array}\right) \\
& \|\left(\begin{array}{l}
-1 \\
0 \\
1
\end{array}\| \|=\sqrt{2}\left\|\left(\begin{array}{c}
-1 / 2 \\
1 \\
-1 / 2
\end{array}\right)\right\|=\sqrt{3 / 2}\right. \\
& \text { set } \underline{u}_{2}=\left(\begin{array}{c}
-1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right), \quad u_{3}=\left(\begin{array}{c}
-1 / \sqrt{6} \\
2 \\
-1 / \sqrt{6}
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{ll}
1 & 2 \\
1 & 2 \\
1 & 2
\end{array}\right)=\left(\begin{array}{ccc}
1 / \sqrt{3} & -1 / \sqrt{2} & -1 / \sqrt{6} \\
1 / \sqrt{3} & 0 & 2 / \sqrt{6} \\
1 / \sqrt{3} & 1 / \sqrt{2} & -1 / \sqrt{6}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{15} & 0 \\
0 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
1 / \sqrt{3} & 2 / \sqrt{5} \\
-2 / \sqrt{5} & 1 / \sqrt{5}
\end{array}\right)
\end{aligned}
$$

8. (25 points) Find a general solution to the following differential equation

$$
y^{\prime \prime}-2 y^{\prime}+y=12 t^{2} e^{t}
$$

Solution:
$r^{2}-2 r+1=0 \Rightarrow(r-1)^{2}=0 \Rightarrow 1$ repented auxiliang root
\Rightarrow Geneal solution to $y^{\prime \prime}-2 y^{\prime}+y=c_{1} e^{t}+c_{2} t e^{t}$

$$
\begin{aligned}
& y_{p}(t)= t^{2}\left(A_{0}+A_{1} t+A_{2} t^{2}\right) e^{t}=\left(A_{0} t^{2}+A_{1} t^{3}+A_{2} t^{4}\right) e^{t} \\
& \Rightarrow y_{p}^{\prime}(t)=\left(\left(2 A_{0} t+3 A_{1} t^{2}+4 A_{2} t^{3}\right)+\left(A_{0} t^{2}+A_{1} t^{3}+A_{2} t^{4}\right)\right) e^{t} \\
&=\left(2 A_{0} t+\left(3 A_{1}+A_{0}\right) t^{2}+\left(4 A_{2}+A_{1}\right) t^{3}+A_{2} t^{4}\right) e^{t} \\
& \Rightarrow y_{p}^{\prime \prime}(t)=\left(2 A_{0}+\left(6 A_{1}+2 A_{0}\right) t+\left(12 A_{2}+3 A_{1}\right) t^{2}+4 A_{2} t^{3}\right) e^{t} \\
&+\left(2 A_{0} t+\left(3 A_{1}+A_{0}\right) t^{2}+\left(4 A_{2}+A_{1}\right) t^{3}+A_{2} t^{4}\right) e^{t} \\
& \Rightarrow y_{p}^{\prime \prime}(t)-2 y_{p}^{\prime}(t)+y_{p}(t)= \\
&\left(2 A_{0}+\left(6 A_{1}+2 A_{0}\right) t+\left(12 A_{2}+3 A_{1}\right) t^{2}+4 A_{2} t^{3}\right) e^{t} \\
&+\left(2 A_{0} t+\left(3 A_{1}+A_{0}\right) t^{2}+\left(4 A_{2}+A_{1}\right) t^{3}+A_{2} t^{4}\right) e^{t} \\
&-2\left(2 A_{0} t+\left(3 A_{1}+A_{0}\right) t^{2}+\left(4 A_{2}+A_{1}\right) t^{3}+A_{2} t^{4}\right) e^{t} \\
&+\left(A_{0} t^{2}+A_{1} t^{3}+A_{2} t^{4}\right) e^{t}
\end{aligned}
$$

Solution (continued) :

$$
\begin{array}{ll}
\Rightarrow \quad y_{p}^{\prime \prime}(t)-2 y_{p}^{\prime}(t)+y_{p}(t) & =\left(\left(2 A_{0}\right)+\left(6 A_{1}\right) t+\left(12 A_{2}\right) t^{2}\right) e^{t} \\
\Rightarrow \quad 2 A_{0}=0 \quad & A_{0}=0 \\
6 A_{1}=0 \quad & A_{1}=0 \\
12 A_{2}=12 & A_{2}=1
\end{array}
$$

\Rightarrow General solution is $c_{1} e^{t}+c_{2} t e^{t}+t^{4} e^{t}$
9. (25 points) Consider the following \mathbb{R}^{3}-valued function on \mathbb{R} :

$$
\left(\begin{array}{c}
t \\
t \\
t^{2}
\end{array}\right),\left(\begin{array}{c}
t^{2} \\
t^{2} \\
t^{3}
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
t
\end{array}\right)
$$

Determine if these vector-valued functions are linearly independent. Are they solutions to some 3×3 homogeneous linear system of differential equations? Carefully justify your answers.

Solution:

$$
\begin{aligned}
& c_{1}\left(\begin{array}{c}
t \\
t \\
t^{2}
\end{array}\right)+c_{2}\left(\begin{array}{l}
t^{2} \\
t^{2} \\
t^{3}
\end{array}\right)+c_{3}\left(\begin{array}{l}
1 \\
1 \\
t
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \text { for all } t \Leftrightarrow \\
& c_{1} t+c_{2} t^{2}+c_{3}=0 \text { for all } t \Leftrightarrow c_{1}=c_{2}=c_{3}=0 \\
& \Rightarrow \quad\left(\begin{array}{l}
t \\
t \\
t^{2}
\end{array}\right),\left(\begin{array}{c}
t^{2} \\
t^{2} \\
t^{3}
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
t
\end{array}\right) \text { are } \begin{array}{l}
I . \\
W\left[\underline{x}_{1}, \underline{x}_{2}, x_{3}\right](t)
\end{array} \\
& \text { However } \operatorname{det}\left(\begin{array}{lll}
t & t^{2} & 1 \\
t & t^{2} & 1 \\
t^{2} & t^{3} & t
\end{array}\right)=t\left(t^{2} \cdot t-t^{3}\right) \\
& -t^{2}\left(t \cdot t-t^{2}\right) \\
& +1\left(t \cdot t^{3}-t^{2} t^{2}\right) \\
& =0 \text { free all } t
\end{aligned}
$$

If $\underline{x}_{1}, \underline{x}_{2}, \underline{x}_{3}$ where solutions to a 3×3 homogeneous system then because L.I. $W\left[\underline{x_{1}}, \underline{x_{2}}, \underline{x}_{3}\right](t) \neq 0$ for all t.

This is ant the case, hence there is no such 3×3 hisear system.
10. (25 points) Calculate the sine Fourier series of the function $f(x)=x$, on the interval $[0, \pi]$. Use this to prove that

$$
\frac{1}{1}-\frac{1}{3}+\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\cdots=\frac{\pi}{4}
$$

Solution:

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} x \sin (n x) d x \\
n \geq 1 & =\frac{-x}{n} \cos (n x)-\int_{0}^{1} 1 \cdot \frac{-1}{n} \cos (n x) d x \\
& =\frac{-x}{n} \cos (n x)+\frac{1}{n^{2}} \sin (n x) \\
\Rightarrow \frac{2}{\pi} \int_{0}^{\pi} x \sin (n x) d x & \left.=\frac{2}{\pi}\left(\frac{-x}{n} \cos (n x)+\frac{1}{n^{2}} \sin (n x)\right) \int_{0}^{\pi} \cos (n \pi)\right)-\frac{-2}{n}(-1)^{n} \\
& =\sum_{n=1}^{\infty} \frac{-2}{n}(-1)^{n} \sin (n x)
\end{aligned}
$$

Evaluating $f(x)=x$ at $\frac{\pi}{2}$ give

$$
\begin{aligned}
\Rightarrow \frac{\pi}{2} & =\sum_{n=1}^{\infty} \frac{-2}{n}(-1)^{n} \sin \left(\frac{n \pi}{2}\right) \\
& =\frac{2}{1}-\frac{2}{3}+\frac{2}{5}-\frac{2}{7} \\
\Rightarrow \frac{\pi}{4} & =\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7} \cdots
\end{aligned}
$$

