Physics 110A (Electrodynamics) — Midterm Exam / November 4, 2019

Problem 1 (50 points)

A perfect electric dipole with dipole moment p° = pZ is held at height d above an infinite grounded
conducting plane. Find the surface charge density o that is induced on the plane.

Express your result as follows.
If the dipole is at (x,y, z) coordinates (0,0,d) and the plane is at z = 0, express ¢ as a function of the
distance s = /2?2 + y? from the origin.

Problem 2 (50 points)
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h .<7 Surface charge density on side = 273?% = %

A cylinder of height h and radius R is aligned with its axis along the z-axis. A total charge of —(Q) is
uniformly distributed on each of the two bases (with surface charge density o = —Q/7R?), and a total
charge of 2Q) is uniformly distributed on the side (with surface charge density ¢’ = @Q/mwah).

Find an approximate expression for the electrostatic potential V' produced by the cylinder at large distance
r away. Assume r > a,h and V — 0 as r — oc.

Express your result in spherical coordinates with the origin at the center of the cylinder (at height %, not
shown in the picture). V(r, ) should fall off as a power law in r.

Note: the cylinder is neutral as a whole, i.e., the total charge is (—Q) + (—Q) + (2Q) = 0.



Solution to problem 1

The electric field of a dipole at the origin is
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For a dipole at (0,0, d), the electric field at r is
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We use the method of images and put an image dipole at (0,0, —d). The image dipole has the same dipole
moment, because if the original dipole is composed of a —q at (0,0, d) and a +q at (0,0,d+h), with p = gh,
then the image dipole will be composed of +¢ at (0,0, —d) and —q at (0,0, —d — h) with dipole moment

(—=q)(=h) = gh.
The image dipole contributes
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Now, we set

E = El —|— E2
and set z = 0, and
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We calculate
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Solution to problem 2

The total monopole and dipole terms of the multipole expansion are zero. The first nonzero multipole is
[ = 2 and we need to calculate
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For the top base we set
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The contribution of the bottom base is the same.

(R* = h?)

Side

For the side we set
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The potential is




