Physics 110A (Electrodynamics) - Midterm Exam / November 4, 2019

Problem 1 (50 points)

A perfect electric dipole with dipole moment $\vec{p}=p \hat{z}$ is held at height d above an infinite grounded conducting plane. Find the surface charge density σ that is induced on the plane.

Express your result as follows.
If the dipole is at (x, y, z) coordinates $(0,0, d)$ and the plane is at $z=0$, express σ as a function of the distance $s=\sqrt{x^{2}+y^{2}}$ from the origin.

Problem 2 (50 points)

A cylinder of height h and radius R is aligned with its axis along the z-axis. A total charge of $-Q$ is uniformly distributed on each of the two bases (with surface charge density $\sigma=-Q / \pi R^{2}$), and a total charge of $2 Q$ is uniformly distributed on the side (with surface charge density $\sigma^{\prime}=Q / \pi a h$).

Find an approximate expression for the electrostatic potential V produced by the cylinder at large distance r away. Assume $r \gg a, h$ and $V \rightarrow 0$ as $r \rightarrow \infty$.

Express your result in spherical coordinates with the origin at the center of the cylinder (at height $\frac{h}{2}$, not shown in the picture). $V(r, \theta)$ should fall off as a power law in r.

Note: the cylinder is neutral as a whole, i.e., the total charge is $(-Q)+(-Q)+(2 Q)=0$.

Solution to problem 1

The electric field of a dipole at the origin is

$$
\vec{E}=\frac{3(\vec{p} \cdot \hat{r}) \hat{r}-\vec{p}}{4 \pi \epsilon_{0} r^{3}}
$$

We set

$$
\hat{r}=\frac{x}{r} \hat{x}+\frac{y}{r} \hat{y}+\frac{z}{r} \hat{z}, \quad \vec{p} \cdot \hat{r}=\frac{\vec{p} \cdot \vec{r}}{r}=\frac{p z}{r}, \quad r=\sqrt{x^{2}+y^{2}+z^{2}} .
$$

For a dipole at $(0,0, d)$, the electric field at r is

$$
\vec{E}_{1}(\vec{r})=\frac{1}{4 \pi \epsilon_{0} r_{1}^{3}}\left\{\frac{3 p(z-d)}{r_{1}^{2}}[x \hat{x}+y \hat{y}+(z-d) \hat{z}]-p \hat{z}\right\}, \quad r_{1} \equiv \sqrt{x^{2}+y^{2}+(z-d)^{2}}
$$

We use the method of images and put an image dipole at $(0,0,-d)$. The image dipole has the same dipole moment, because if the original dipole is composed of a $-q$ at $(0,0, d)$ and $\mathrm{a}+q$ at $(0,0, d+h)$, with $p=q h$, then the image dipole will be composed of $+q$ at $(0,0,-d)$ and $-q$ at $(0,0,-d-h)$ with dipole moment $(-q)(-h)=q h$.

The image dipole contributes

$$
\vec{E}_{2}(\vec{r})=\frac{1}{4 \pi \epsilon_{0} r_{2}^{3}}\left\{\frac{3 p(z+d)}{r_{2}^{2}}[x \hat{x}+y \hat{y}+(z+d) \hat{z}]-p \hat{z}\right\}, \quad r_{2} \equiv \sqrt{x^{2}+y^{2}+(z+d)^{2}}
$$

Now, we set

$$
\vec{E}=\vec{E}_{1}+\vec{E}_{2}
$$

and set $z=0$, and

$$
\sigma=\epsilon_{0} \vec{E} \cdot \hat{z}
$$

We calculate

$$
\begin{gathered}
r_{1}=r_{2}=\sqrt{s^{2}+d^{2}} \\
\vec{E}_{1}(x, y, 0) \cdot \hat{z}=\frac{p}{4 \pi \epsilon_{0} r_{1}^{3}}\left(\frac{3 d^{2}}{r_{1}^{2}}-1\right)=\frac{p}{4 \pi \epsilon_{0}{\sqrt{s^{2}+d^{2}}}^{3}}\left(\frac{3 d^{2}}{s^{2}+d^{2}}-1\right)
\end{gathered}
$$

and

$$
\vec{E}_{2}(x, y, 0) \cdot \hat{z}=\frac{p}{4 \pi \epsilon_{0} r_{2}^{3}}\left(\frac{3 d^{2}}{r_{2}^{2}}-1\right)=\frac{p}{4 \pi \epsilon_{0}{\sqrt{s^{2}+d^{2}}}^{3}}\left(\frac{3 d^{2}}{s^{2}+d^{2}}-1\right)
$$

So

$$
\sigma=\frac{p}{2 \pi{\sqrt{s^{2}+d^{2}}}^{3}}\left(\frac{3 d^{2}}{s^{2}+d^{2}}-1\right)
$$

Solution to problem 2

The total monopole and dipole terms of the multipole expansion are zero. The first nonzero multipole is $l=2$ and we need to calculate

$$
q_{2}=\int r^{2} P_{2}(\cos \theta) \rho(\vec{r}) d \tau=\int r^{2}\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right) \rho(\vec{r}) d \tau=\frac{1}{2} \int\left(2 z^{2}-x^{2}-y^{2}\right) \rho d \tau
$$

Bases

For the top base we set

$$
(x, y, z)=\left(s \cos \phi, s \sin \phi, \frac{h}{2}\right), \quad \rho d \tau \rightarrow-\frac{Q}{\pi R^{2}} s d s d \phi
$$

Then,

$$
\begin{aligned}
\frac{1}{2} \int\left(2 z^{2}-x^{2}-y^{2}\right) \rho d \tau & =-\frac{Q}{2 \pi R^{2}} \int_{0}^{2 \pi} \int_{0}^{R}\left[2\left(\frac{h}{2}\right)^{2}-s^{2}\right] s d s d \phi=-\frac{Q}{R^{2}} \int_{0}^{R}\left[2\left(\frac{h}{2}\right)^{2}-s^{2}\right] s d s \\
& =-\frac{Q}{R^{2}}\left(\frac{h^{2} R^{2}}{4}-\frac{R^{4}}{4}\right)=\frac{Q}{4}\left(R^{2}-h^{2}\right)
\end{aligned}
$$

The contribution of the bottom base is the same.

Side

For the side we set

$$
(x, y, z)=(R \cos \phi, R \sin \phi, z), \quad \rho d \tau \rightarrow \frac{Q}{\pi R h} R d \phi d z=\frac{Q}{\pi h} d \phi d z
$$

Then,

$$
\begin{aligned}
\frac{1}{2} \int\left(2 z^{2}-x^{2}-y^{2}\right) \rho d \tau & =\frac{Q}{2 \pi h} \int_{0}^{2 \pi} \int_{-\frac{h}{2}}^{\frac{h}{2}}\left[2 z^{2}-R^{2}\right] d z d \phi=\frac{Q}{h} \int_{-\frac{h}{2}}^{\frac{h}{2}}\left[2 z^{2}-R^{2}\right] d z \\
& =\frac{Q}{h}\left[\frac{4}{3}\left(\frac{h}{2}\right)^{3}-R^{2} h\right]=Q\left(\frac{h^{2}}{6}-R^{2}\right)
\end{aligned}
$$

Altogether, we get

$$
q_{2}=2 \frac{Q}{4}\left(R^{2}-h^{2}\right)+Q\left(\frac{h^{2}}{6}-R^{2}\right)=-\left(\frac{h^{2}}{3}+\frac{R^{2}}{2}\right) Q
$$

The potential is

$$
V \approx \frac{1}{4 \pi \epsilon_{0}} \frac{q_{2}}{r^{3}} P_{2}(\cos \theta)=\frac{q_{2}}{8 \pi \epsilon_{0}}\left(\frac{3 \cos ^{2} \theta-1}{r^{3}}\right) .
$$

