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Problem A. Decide if the following are always true or at least sometimes false. Enter your
answers as T or F in the following chart. Correct answers receive 1 points, incorrect answers
receive -1 points, and blank answers receive 0 points. No justification is necessary, although if you
believe the question is ambiguous, record your interpretation below it. A is always a matrix.

Statement 1 2 3 4 5 6 7 8 9 10
Answer

1. The equation y′′(t) = (y′(t))2 is a differential equation. True. (Although it’s not linear.)

2. Every linear, constant coefficient, homogenous ODE has a basis of solutions of the form ect

for varying c. False. (Consider e.g. y′′(t) = 0, or more generally any equation for which the
auxilliary polynomial has a multiple root.)

3. If the Wronskian of a collection of functions vanishes at any point, then the functions are
linearly dependent. False. (This is only true if the functions are solutions to a linear ODE
whose order is the same as the number of functions being considered.)

4. There exists a unique solution to the equation y′′(t) + cos(t)y′(t) + ty(t) with y(0) = 1 and
y′(0) = 2. True. (Existence and uniqueness theorem.)

5. There is a third-order, linear, constant coefficient, homogenous ODE with t4 as a solution.
False. (A linear constant coefficient homogenous ODE with t4 as a solution must have 0 as
a multiplicity 5 root of its auxilliary polynomial, so must have degree at least 5.)

6. The motion of a spring is described by a linear ordinary differential equation. True. (It’s
x′′(t) + kx(t) = 0.)

7. The heat equation is a linear differential equation. True.

8. Computing Fourier coefficients can be thought of as an orthogonal projection. True.

9. The Fourier expansion of the function |x| on the interval [−π, π] has no cosine terms. False.
(The function |x| is even, so one should expect cosine terms.)1

10. The space of f satisfying
∫ 10

0
f(x)dx = 0 is a vector space. True.

1Incidentally this question is not completely precise: before asking for “the Fourier expansion” one should specify
how exactly a function is made periodic. I will do so on the exam. However in this case, no matter how you make this
function periodic, you will need cosine terms in the Fourier expansion, just because of the behavior near 0.
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Problem B. Give an example, or explain why none exists.

1. (3 pts) A linear partial differential equation.

One could make a case that 0 = 0 is a linear PDE in which all the coefficients happen to be
zero, I would have given credit to someone who wrote this and argued for it. However a more
reasonable answer is e.g. the heat equation

∂

∂t
f(x, t) =

∂2

∂x2
f(x, t)

2. (3 pts) A linear, constant coefficient, homogenous, second order ODE with solutions e2x, ex.

We should have the auxilliary polynomial (z − 1)(z − 2), hence the ODE(
d

dx
− 1

)(
d

dx
− 2

)
f(x) = 0

Expanding it out gives f ′′(x)− 3f ′(x) + 2f(x) = 0.

3. (4 pts) A third order linear, constant coefficient, homogenous ODE with solutions x, ex.

We need 0 to be a double root of the auxilliary polynomial, and 1 a simple root. So the auxilliary
polynomial is z2(z − 1), and the ODE is(

d

dx

)2(
d

dx
− 1

)
f(x) = 0

or expanding it out, f ′′′(x)− f ′′(x) = 0.
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Problem C.

(1 pt) Give the general solution to the equation y′ = 3y.

y = ce3t, some constant c.

(2 pts) Give the general solution to the equation y′′ + 3y′ + 2y = 0.

y = ae−t + be−2t, some constants a, b.

(3 pts) Give the general solution to the equation y′′ + 4y = 0. Be sure to use real valued
functions.

y = a sin(2t) + b cos(2t), some constants a, b.

(4 pts) Give the general solution to the equation y′′ + 3y′ + 2y = e−2t.

The auxilliary equation is (z+1)(z+2), of which −2 is a simple root. So we should try te−2t.
We find (

d

dt
+ 1

)(
d

dt
+ 2

)
te−2t =

(
d

dt
+ 1

)
e−2t = −2e−2t + e−2t = −e−2t

So, −te−2t gives one solution. We already found the general solution for the homegenous part
above, and we add these to get

y = −te−2t + ae−t + be−2t
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Problem D.

(10 pts) State the existence and uniqueness theorem for linear homogenous ODE. (You can use
any of the various equivalent formulations.)

An order n linear homogenous ODE for the unknown function y(t) has a unique solution with
any prescribed y(t0), y′(t0), . . . , y(n−1)(t0), for any t0 in the domain of definition of the coefficients,
which are assumed to be continuous functions of t.
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Problem E. Consider the equation y′′(t)− 4y(t) = 0.

(3 pts) Find a basis for the solutions

e2t, e−2t

(3 pts) Compute the Wronskian of the basis you found

det

[
e2t e−2t

2e2t −2e−2t
]
= −4

(4pts) Find y(t) satisfying the above equation, such that y(0) = 1 and y′(0) = 1.

We must solve [
e2t e−2t

2e2t −2e−2t
]
t=0

[
a
b

]
=

[
1
1

]
Inverting the matrix, [

a
b

]
= −1

4

[
−2 −1
−2 1

] [
1
1

]
=

[
3/4
1/4

]
Thus the solution is

y(t) =
3

4
e2t +

1

4
e−2t
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Problem F. Consider the equation y′′′(t)− 2y′′(t) + y′(t)− 2y(t).

(5pts) Find a basis of real solutions

The auxilliary polynomial is z3−2z2+z−2 = (z−2)(z+i)(z−i), so a basis of real solutions
is e2t, sin(t), cos(t).

(5pts) Solve the initial value problem y(0) = 0, y′(0) = 1, y′′(0) = 2.

In terms of the fundamental solution matrix we want to solve: e2t sin(t) cos(t)
2e2t cos(t) − sin(t)
4e2t − sin(t) − cos(t)


t=0

 a
b
c

 =

 1 0 1
2 1 0
4 0 −1

 a
b
c

 =

 0
1
2


Probably this linear equation is easier to solve by just looking than by inverting the matrix; in any
case the solution is a = −c = 2/5 and b = 1/5. We then have

y(t) =
2

5
e2t +

1

5
sin(t)− 2

5
cos(t)
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Problem G.

(2pts) Compute
(

0 1
1 1

)2

,

(
0 1
1 1

)3

,

(
0 1
1 1

)4

,

(
0 1
1 1

)5

These are, respectively,
(

1 1
1 2

)
,

(
1 2
2 3

)
,

(
2 3
3 5

)
,

(
3 5
5 8

)

(5pts) Compute the eigenvalues and eigenvectors of the matrix
(

0 1
1 1

)
The characteristic polynomial is −x(1− x)− 1 = x2 − x− 1. The roots of this are x = 1±

√
5

2
.

The corresponding eigenvectors are the null spaces for

(
−1∓

√
5

2
1

1 1∓
√
5

2

)
, namely the vectors

(2, 1±
√
5)T .

(3pts) Compute
(

0 1
1 1

)100

(
0 1
1 1

)100

= − 1
4
√
5

(
2 2

1 +
√
5 1−

√
5

)(
1+
√
5

2
0

0 1−
√
5

2

)100(
1−
√
5 −2

−1−
√
5 2

)
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Problem H.

(10 pts) Find bases for the kernel and image of the linear transformation given by the matrix:

M =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16


The organized way to do this involves row reduction. Let me do something different. Just

by looking, one sees the following relations among rows: 2r2 = r1 + r3 and 2r3 = r2 + r4.
That is, the vectors (1,−2, 1, 0)T , (0, 1,−2, 1)T are in the kernel (aka null space). They’re linearly
independent, so the kernel is at least 2 dimensional. It’s also at most two dimensional, since if it
were 3 dimensional, then the row span would be 1 dimensional, so all rows would be multiples of
each other. That’s not the case. So, those two elements give a basis.

Now for the image. This is the same as the column span. The columns satisfy the same
relations, 2c2 = c1 + c3 and 2c3 = c2 + c4. From this one sees easily that c2, c3 can be written in
terms of c1, c4. As c1, c4 are not multiples, they’re linearly independent, hence the first and fourth
columns form a basis of the column space.
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Problem I.

(10pts) Consider the function f(x) defined on [0, π] by the formula

f(x) =

{
−x x < π/2

π − x x ≥ π/2

Determine the sine Fourier series of this function.

We should compute the coefficients by

bn =
2

π

(∫ π/2

0

−x sin(nx)dx+
∫ π

π/2

(π − x) sin(nx)dx

)
=

2

π

(∫ π

0

−x sin(nx)dx+
∫ π

π/2

π sin(nx)dx

)
=

2

π

(
1

n2

∫ nπ

0

−u sin(u)du+ π

n

∫ nπ

nπ/2

sin(u)du

)
=

2

π

(
1

n2
[u cos(u)− sin(u)|nπ0 +

π

n
[− cos(u)|nπnπ/2

)
=

=
2

n
cos(nπ/2)

Noting that the above vanishes unless n = 2k is even,

f(x) =
∞∑
k=1

1

k
(−1)k sin(2kx)

9



Name (Last, First):
Final, Math 54 003,

Lin. Alg. & Diff. Eq., Spring 2016

Problem J.

(10 pts) Consider a wire of length π, which is stretched from x = 0 to x = π.

Suppose the initial temperature is given by the function

u(x, 0) =

{
0 x < π/2

π x ≥ π/2

and that as time progresses, the ends are kept at the temperatures 0 and π respectively.

Using these initial and boundary conditions, solve the heat equation

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t)

Subtracting off the stationary solution u(x, t) = x, we are reduced to solving the heat equa-
tion with u(x, 0) − x given by the function of the previous question. We have already found its
sine Fourier series. It remains only to restore the appropriate eigenfunctions of ∂/∂t to write the
solution:

u(x, t) = x+
∞∑
k=1

1

k
(−1)k sin(2kx)e−(2k)2t
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