Student ID \qquad
Circle your section:

```
3 0 1 ~ M W F ~ 8 - 9 A ~ 1 2 1 ~ L A T I M E R ~ L I A N G ~
303 MWF 9-10A 121 LATIMER SHAPIRO
3 0 6 ~ M W F ~ 1 0 - 1 1 A ~ 2 3 7 ~ C O R Y ~ S H A P I R O ~
3 0 7 \text { MWF 11-12P 736 EVANS WORMLEIGHTON}
3 0 9 ~ M W F ~ 4 - 5 P ~ 1 0 0 ~ W H E E L E R ~ R A B I N O V I C H ~
313 MWF 2-3P 115 KROEBER LIANG
3 1 4 ~ M W F ~ 1 - 2 P ~ 1 1 0 ~ W H E E L E R ~ W O R M L E I G H T O N
3 1 5 ~ M W F ~ 3 - 4 P ~ 1 2 1 ~ L A T I M E R ~ R A B I N O V I C H
```

If none of the above, please explain: \qquad

Only this exam

 and a pen or pencil should be on your desk.(You can get scratch paper from me if you need it.)

Problem	Points Possible	Your Score
A	10	
B	10	
C	10	
D	10	
E	10	
F	10	
G	10	
H	10	
I	10	
J	10	

Problem A. Decide if the following are always true or at least sometimes false. Enter your answers as \mathbf{T} or \mathbf{F} in the following chart. Correct answers receive 1 points, incorrect answers receive -1 points, and blank answers receive 0 points. No justification is necessary, although if you believe the question is ambiguous, record your interpretation below it. A is always a matrix.

Statement	1	2	3	4	5	6	7	8	9	10
Answer										

1. The equation $y^{\prime \prime}(t)=\left(y^{\prime}(t)\right)^{2}$ is a differential equation.
2. Every linear, constant coefficient, homogenous ODE has a basis of solutions of the form $e^{c t}$ for varying c.
3. If the Wronskian of a collection of functions vanishes at any point, then the functions are linearly dependent.
4. There exists a unique solution to the equation $y^{\prime \prime}(t)+\cos (t) y^{\prime}(t)+t y(t)$ with $y(0)=1$ and $y^{\prime}(0)=2$.
5. There is a third-order, linear, constant coefficient, homogenous ODE with t^{4} as a solution.
6. The motion of a spring is described by a linear ordinary differential equation.
7. The heat equation is a linear differential equation.
8. Computing Fourier coefficients can be thought of as an orthogonal projection.
9. The Fourier expansion of the function $|x|$ on the interval $[-\pi, \pi]$ has no cosine terms.
10. The space of f satisfying $\int_{0}^{10} f(x) d x=0$ is a vector space.

Problem B. Give an example, or explain why none exists.

1. (3 pts) A linear partial differential equation.
2. (3 pts) A linear, constant coefficient, homogenous, second order ODE with solutions $e^{2 x}, e^{x}$.
3. (4 pts) A third order linear, constant coefficient, homogenous ODE with solutions x, e^{x}.

Problem C.

(1 pt) Give the general solution to the equation $y^{\prime}=3 y$.
(2 pts) Give the general solution to the equation $y^{\prime \prime}+3 y^{\prime}+2 y=0$.
(3 pts) Give the general solution to the equation $y^{\prime \prime}+4 y=0$. Be sure to use real valued functions.
(4 pts) Give the general solution to the equation $y^{\prime \prime}+3 y^{\prime}+2 y=e^{-2 t}$.

Problem D.

(10 pts) State the existence and uniqueness theorem for linear homogenous ODE. (You can use any of the various equivalent formulations.)

Problem E. Consider the equation $y^{\prime \prime}(t)-4 y(t)=0$.
(3 pts) Find a basis for the solutions
(3 pts) Compute the Wronskian of the basis you found
(4pts) Find $y(t)$ satisfying the above equation, such that $y(0)=1$ and $y^{\prime}(0)=1$.

Problem F. Consider the equation $y^{\prime \prime \prime}(t)-2 y^{\prime \prime}(t)+y^{\prime}(t)-2 y(t)$.
(5pts) Find a basis of real solutions
(5pts) Solve the initial value problem $y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=2$.

Problem G.
(2pts) Compute $\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)^{2},\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)^{3},\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)^{4},\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)^{5}$
(5pts) Compute the eigenvalues and eigenvectors of the matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$
(3pts) Compute $\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)^{100}$

Problem H.

(10 pts) Find bases for the kernel and image of the linear transformation given by the matrix:

$$
M=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{array}\right)
$$

Problem I.

(10pts) Consider the function $f(x)$ defined on $[0, \pi]$ by the formula

$$
u(x, 0)= \begin{cases}-x & x<\pi / 2 \\ \pi-x & x \geq \pi / 2\end{cases}
$$

Determine the sine Fourier series of this function.

Problem J.

(10 pts) Consider a wire of length π, which is stretched from $x=0$ to $x=\pi$.
Suppose the initial temperature is given by the function

$$
u(x, 0)= \begin{cases}0 & x<\pi / 2 \\ \pi & x \geq \pi / 2\end{cases}
$$

and that as time progresses, the ends are kept at the temperatures 0 and π respectively.
Using these initial and boundary conditions, solve the heat equation

$$
\frac{\partial}{\partial t} u(x, t)=\frac{\partial^{2}}{\partial x^{2}} u(x, t)
$$

