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Problem A. Decide if the following are always true or at least sometimes false. Enter your
answers as T or F in the following chart. Correct answers receive 1 points, incorrect answers
receive -1 points, and blank answers receive 0 points. No justification is necessary, although if you
believe the question is ambiguous, record your interpretation below it. A is always a matrix.

Statement | 1 |2 |34 [5|6|7 89110
Answer

1. The equation y”(t) = (v/(t))? is a differential equation.

2. Every linear, constant coefficient, homogenous ODE has a basis of solutions of the form e
for varying c.

3. If the Wronskian of a collection of functions vanishes at any point, then the functions are
linearly dependent.

4. There exists a unique solution to the equation y”(¢) + cos(t)y’(t) + ty(t) with y(0) = 1 and
y(0) =2

5. There is a third-order, linear, constant coefficient, homogenous ODE with ¢* as a solution.
6. The motion of a spring is described by a linear ordinary differential equation.

7. The heat equation is a linear differential equation.

8. Computing Fourier coefficients can be thought of as an orthogonal projection.

9. The Fourier expansion of the function |z| on the interval [—7, 7] has no cosine terms.

10. The space of f satisfying folo f(z)dz = 0 is a vector space.
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Problem B. Give an example, or explain why none exists.

1. (3 pts) A linear partial differential equation.

2. (3 pts) A linear, constant coefficient, homogenous, second order ODE with solutions €%, e*.

3. (4 pts) A third order linear, constant coefficient, homogenous ODE with solutions x, e”.
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Problem C.

(1 pt) Give the general solution to the equation ¢y = 3y.

(2 pts) Give the general solution to the equation y” + 3y’ + 2y = 0.

(3 pts) Give the general solution to the equation y” + 4y = 0. Be sure to use real valued
functions.

(4 pts) Give the general solution to the equation y” + 3y’ + 2y = e~ 2.
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Problem D.

(10 pts) State the existence and uniqueness theorem for linear homogenous ODE. (You can use
any of the various equivalent formulations.)
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Problem E. Consider the equation y”(t) — 4y(t) = 0.

(3 pts) Find a basis for the solutions

(3 pts) Compute the Wronskian of the basis you found

(4pts) Find y(t) satisfying the above equation, such that y(0) = 1 and /(0) = 1.
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Problem F. Consider the equation y"”'(t) — 2y"(t) + v/'(t) — 2y(t).

(5pts) Find a basis of real solutions

(5pts) Solve the initial value problem y(0) = 0, y/(0) = 1, ¢”(0) = 2.



Final, Math 54 003,
Name (Last, First): Lin. Alg. & Diff. Eq., Spring 2016

Problem G.

2 3 4 5
01 01 01 01
(2pts)Compute(1 1),(1 1),(1 1>7(1 1)

(5pts) Compute the eigenvalues and eigenvectors of the matrix ( ? 1 >

0 1 100
(3pts) Compute ( 11 )
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Problem H.

(10 pts) Find bases for the kernel and image of the linear transformation given by the matrix:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
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Problem I.
(10pts) Consider the function f(x) defined on [0, 7| by the formula
— < m/2
ul(,0) = x r<m/
T—x x>m/2

Determine the sine Fourier series of this function.
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Problem J.
(10 pts) Consider a wire of length 7, which is stretched from x = 0 to z = 7.
Suppose the initial temperature is given by the function

(i, 0) = {O r<7/2

T ox>7/2

and that as time progresses, the ends are kept at the temperatures 0 and 7 respectively.

Using these initial and boundary conditions, solve the heat equation

2

(x,t) = =—u(x,t)

Eu 0x?
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