Student ID \qquad
Circle your section:

301	MWF 8-9A	121 LATIMER	LIANG
303	MWF 9-10A	121 LATIMER	SHAPIRO
306	MWF 10-11A	237 CORY	SHAPIRO
307	MWF 11-12P	736 EVANS	WORMLEIGHTON
309	MWF 4-5P	100 WHEELER	RABINOVICH
313	MWF 2-3P	115 KROEBER	LIANG
314	MWF 1-2P	110 WHEELER	WORMLEIGHTON
315	MWF 3-4P	121 LATIMER	RABINOVICH

If none of the above, please explain: \qquad

Only this exam

 and a pen or pencil should be on your desk.(You can get scratch paper from me if you need it.)

Problem	Points Possible	Your Score
A	10	
B	10	
C	10	
D	10	
E	10	

Problem A. Decide if the following are always true or at least sometimes false. Enter your answers as \mathbf{T} or \mathbf{F} in the following chart. Correct answers receive 1 points, incorrect answers receive -1 points, and blank answers receive 0 points. No justification is necessary, although if you believe the question is ambiguous, record your interpretation below it. A is always a matrix.

Statement	1	2	3	4	5	6	7	8	9	10
Answer										

1. Any real vector space is isomorphic to \mathbb{R}^{n} for some n.
2. Any two real vector spaces with bases of the same size are isomorphic.
3. If V is a subspace of W, then $\operatorname{dim} V \leq \operatorname{dim} W$.
4. The map $f(x) \mapsto(d f / d x)^{2}$ is linear.
5. If X and Y are diagonalizable, then $X Y=Y X$.
6. All matrices have at least one complex eigenvalue.
7. The kernel of a matrix contains all nonzero eigenspaces.
8. The orthogonal complement of the orthogonal complement of the orthogonal complement of V is the orthogonal complement of V.
9. Eigenvectors with distinct eigenvalues are linearly independent.
10. For any vectors \mathbf{v}, \mathbf{w}, we have $\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}$.

Problem B. Give an example, or explain why none exists.

1. (3 pts) An orthonormal basis of \mathbb{R}^{2} containing no standard basis vectors.
2. (3 pts) A nonzero linear map $\mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ whose cube is zero.
3. (4 pts) A 5×5 matrix with no real eigenvalues.

Problem C. (Possibly useful fact: $\cos (\pi / 3)=1 / 2$ and $\sin (\pi / 3)=\sqrt{3} / 2$)
(3 pts) Find the eigenvalues of $\left[\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right]$.
(3 pts) Find a basis in which $\left[\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right]$ is diagonal.
(2 pts) Compute $\left[\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right]^{100}$. Simplify your answer as much as possible.
(2 pts) Describe using pictures and words the actions of $\left[\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right]$ and $\left[\begin{array}{cc}1 / 2 & -\sqrt{3} / 2 \\ \sqrt{3} / 2 & 1 / 2\end{array}\right]^{100}$.

Problem D. Consider the vector space V spanned by the functions $e^{x}, x e^{x}, x^{2} e^{x}$.

1. (3 pts) Show that $\frac{d}{d x}$ determines a linear transformation $V \rightarrow V$.
2. (3 pts) Write the matrix of $\frac{d}{d x}$ in the basis $e^{x}, x e^{x}, x^{2} e^{x}$.
3. (4 pts) Is $\frac{d}{d x}$ diagonalizaable on V ? Why or why not?

Problem E.

1. (3 pts) Compute all dot products (there are 6) amongst the vectors

$$
(1,0,1,0),(1,0,-1-0),(0,1,0,1),(0,1,0,-1)
$$

2. (3 pts) Determine the orthogonal projection of the vector $(1,3,5,7)$ to the vector space spanned by $(1,0,1,0)$ and $(1,0,-1-0)$.
3. (4 pts) Find a basis for the orthogonal complement of the line spanned by (1, 3, 5, 7).
