Student ID \qquad
Circle your section:

301	MWF 8-9A	121 LATIMER	LIANG
303	MWF 9-10A	121 LATIMER	SHAPIRO
306	MWF 10-11A	237 CORY	SHAPIRO
307	MWF 11-12P	736 EVANS	WORMLEIGHTON
309	MWF 4-5P	100 WHEELER	RABINOVICH
313	MWF 2-3P	115 KROEBER	LIANG
314	MWF 1-2P	110 WHEELER	WORMLEIGHTON
315	MWF 3-4P	121 LATIMER	RABINOVICH

If none of the above, please explain: \qquad

Only this exam

 and a pen or pencil should be on your desk.(You can get scratch paper from me if you need it.)

Problem	Points Possible	Your Score
A	10	
B	10	
C	10	
D	10	
E	10	

Problem A. Decide if the following are always true or at least sometimes false. Enter your answers as \mathbf{T} or \mathbf{F} in the following chart. Correct answers receive 1 points, incorrect answers receive -1 points, and blank answers receive 0 points. No justification is necessary, although if you believe the question is ambiguous, record your interpretation below it. A is always a matrix.

Statement	1	2	3	4	5	6	7	8	9	10
Answer										

1. The range of a linear transformation is the column space of the corresponding matrix.
2. If the rows of the matrix of a linear transformation span, the linear transformation is onto.
3. If a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{n} is $1-1$, then it is also onto.
4. The determinant of a sum of square matrices is the sum of the determinants.
5. The determinant of a product of square matrices is the product of the determinants.
6. For a matrix A, if A^{2} is defined, then it has the same size as A.
7. If the determinant of a matrix is zero, then the matrix is invertible.
8. If A is square, then the equation $A \mathbf{x}=\mathbf{b}$ always has a unique solution.
9. If $A^{2}=0$, then $A=0$.
10. The determinant of an integer matrix is always an integer.

Problem B. Give an example, or explain why none exists.

1. (3 pts) Three 2×2 matrices which are equal to their own square.
2. (3 pts) Two non-invertible matrices whose sum is an invertible matrix.
3. (4 pts) Two non-square matrices whose product is an invertible matrix.

Problem C.

(3 pts) Compute the product of these matrices:

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
2 & 2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 \\
2 & 2 & 2 & 2 & 2 & 2
\end{array}\right] \cdot\left[\begin{array}{cccccc}
1 & 1 & -1 & -1 & 1 & 1 \\
0 & 1 & 2 & 1 & 2 & 1 \\
0 & 0 & 3 & 3 & 1 & -1 \\
0 & 0 & 0 & 3 & 2 & -1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(7 pts) Compute the determinant of the result. Explain any methods you used.

Problem D. For this problem, you should justify all your work. Consider the matrix

$$
A=\left[\begin{array}{cccc}
0 & 2 & 3 & 4 \\
2 & 1 & 0 & -1 \\
1 & 1 & 2 & 3
\end{array}\right]
$$

1. (2 pts) Write the system of linear equations corresponding to the vector equation $A \mathbf{x}=\mathbf{b}$
2. (3 pts) Give a basis for the space spanned by the columns, chosen from among the columns; give any basis you want for the space spanned by the rows.
3. (4 pts) Give a basis for the null space.
4. (1 pt) For which \mathbf{b} does the system $A \mathbf{x}=\mathbf{b}$ have a solution?

Problem E. For this question, you should explain your answers.

1. (5 pts) If T is a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, such that

$$
T\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad T\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
3
\end{array}\right] \quad T\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right]
$$

Then for which matrix A is it true that, for all vectors x in $\mathbb{R}^{3}, T(\mathbf{x})=A \mathbf{x}$?
2. (5 pts) What's the volume of the parallelopiped in \mathbb{R}^{3} whose 8 corners are

$$
0, \mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{a}+\mathbf{b}, \mathbf{b}+\mathbf{c}, \mathbf{a}+\mathbf{c}, \mathbf{a}+\mathbf{b}+\mathbf{c}
$$

where

$$
\mathbf{a}=\left[\begin{array}{l}
3 \\
1 \\
4
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
1 \\
5 \\
9
\end{array}\right], \mathbf{c}=\left[\begin{array}{l}
2 \\
6 \\
5
\end{array}\right]
$$

