Physics 7B Midterm 2 Solutions - Fall 2019
 Professor A. Lanzara

Problem 1

1. $(5 \mathrm{pt})$ Three infinite flat sheets of charge.
(2 pt) For a single infinite flat sheet of charge, can either write or derive the magnitude from an electric field using Gauss' Law.

$$
\begin{gathered}
\oint \vec{E} \cdot \overrightarrow{d A}=\frac{q_{\text {encl }}}{\epsilon_{0}} \\
E(2 A)=\frac{\sigma A}{\epsilon_{0}} \\
E=\frac{\sigma}{2 \epsilon_{0}}
\end{gathered}
$$

(2 pt) With three sheets, superposition is applied so that the electric field from each sheet contributes to a region.
$(1 \mathrm{pt})$ Therefore, for each region $E_{1}=-\frac{s}{2 \epsilon_{0}}, E_{2}=\frac{s}{2 \epsilon_{0}}, E_{3}=\frac{3 s}{2 \epsilon_{0}}$, and $E_{4}=\frac{s}{2 \epsilon_{0}}$ pointing to the right.
2. (5 pt) Proton fired toward a charged sheet.
i. (2 pt) Force on a charge in a electric field is equal to $\vec{F}=q \vec{E}$, so the force on the charge next to the infinite sheet is $\vec{F}=\frac{q \sigma}{2 \epsilon_{0}}$.
ii. (3 pt) One can calculate the distance away from the sheet either by using conservation of energy or by calculating energy from force. With conservation of energy, one solve as such.

$$
\begin{gathered}
K=W_{\text {stop }}=q \Delta V=q E d \\
d=\frac{K}{q E}=\frac{2 K \epsilon_{0}}{q \sigma}
\end{gathered}
$$

Alternatively, with force, one can solve for the initial velocity and the distance it takes for that velocity to go to zero starting from $K=\frac{1}{2} m v^{2}$ and $v=\sqrt{\frac{2 K}{m}}$.

$$
\begin{gathered}
F=m a=\frac{q \sigma}{2 \epsilon_{0}} \\
a=\frac{q \sigma}{2 m \epsilon_{0}} \\
\Delta t=\frac{v}{a}=\frac{2 m \epsilon_{0}}{q \sigma} \sqrt{\frac{2 K}{m}} \\
d=\frac{1}{2} a \Delta t^{2}=\frac{v^{2}}{2 a}=\frac{K}{m} \frac{2 m \epsilon_{0}}{q \sigma}=\frac{2 K \epsilon_{0}}{q \sigma}
\end{gathered}
$$

3. (5 pt) Equipotential lines.
i. (1 pt) pt) We know that $W=q \Delta V$, therefore the order magnitude wise is (2 pt) $W_{A B}=W_{C D}>W_{A C}$.
ii. (2 pt) We know that electric field is dependent on the density of the equipotenital lines, so that the closer together they are, the stronger the field. From this, we can see that $E_{A}>E_{C}>E_{B}>E_{D} . E_{A}>E_{B}>E_{C}>E_{D}$ is also acceptable.

Problem 2

(a) The bar extends from $x=-L$ to $x=L$ and has linear charge density $\lambda=a x(a>0)$.

If we set the potential equal to zero at spatial infinity, then the potential at point P is given by

$$
V=\int \mathrm{d} V=\frac{1}{4 \pi \epsilon_{0}} \int \underline{\mathrm{~d} q}
$$

where is the separation distance between a point $\mathrm{d} q$ on the rod and the point P.

We write $\mathrm{d} q=\lambda \mathrm{d} x$ and, using the diagram above, $=\sqrt{d^{2}+(L-x)^{2}}$, so

$$
V=\frac{a}{4 \pi \epsilon_{0}} \int_{-L}^{L} \frac{x \mathrm{~d} x}{\sqrt{d^{2}+(L-x)^{2}}}
$$

In order to use the integrals provided on the equation sheet, we need to change variables. Define $u=L-x$, so that $\mathrm{d} u=-\mathrm{d} x$, and adjust the limits of integration:

$$
V=\frac{a}{4 \pi \epsilon_{0}} \int_{2 L}^{0} \frac{-(L-u) \mathrm{d} u}{\sqrt{d^{2}+u^{2}}}=\frac{a}{4 \pi \epsilon_{0}} \int_{0}^{2 L}\left(\frac{L \mathrm{~d} u}{\sqrt{d^{2}+u^{2}}}-\frac{u \mathrm{~d} u}{\sqrt{d^{2}+u^{2}}}\right) .
$$

Referring to the equation sheet, we have

$$
V=\frac{a}{4 \pi \epsilon_{0}}\left[\left.L \ln \left(u+\sqrt{d^{2}+u^{2}}\right)\right|_{0} ^{2 L}-\left.\sqrt{d^{2}+u^{2}}\right|_{0} ^{2 L}\right]
$$

or

$$
V=\frac{a}{4 \pi \epsilon_{0}}\left[L \ln \left(\frac{2 L+\sqrt{d^{2}+4 L^{2}}}{d}\right)-\sqrt{d^{2}+4 L^{2}}+d\right] .
$$

Let's check units: because $\lambda=a x$ had dimensions of charge-per-length, a must have dimensions of charge-per-length ${ }^{2}$. The quantity in square brackets overall has dimensions of length, and thus our expression does have the correct units of potential.
(b) Because the rod has a negatively charged half and a positively charged half, it has a nonzero dipole moment. If an electric field is turned on, the rod will accordingly behave like a dipole: it will tend to rotate to its equilibrium position, making an angle of 0° relative to the electric field. (Note that the problem statement asks for the equilibrium angle relative to the electric field.)

Rubric

Part (a):

- 15 points: Correct
- 12 points: The integral for V is correctly set up but incorrectly or incompletely evaluated
- 10 points: The integral for V is set up with minor errors (e.g. the limits of integration describe the length of the rod but are incorrect, the separation distance involves $L+x$ instead of $L-x$, etc)
- 8 points: The integral for V is set up with more significant errors (e.g. the limits of integration do not describe the length of the rod, the separation distance has the incorrect functional form, etc)
- 3 points: Some attempt was made to set up an expression for V (e.g. there is no integration, an incorrect formula for V is used, the relationship between V and \mathbf{E} is incorrectly applied, etc)
- +1 point: Units were checked
- -1 point: Fundamental errors (e.g. V is treated as a vector quantity)

Part (b)

- 5 points: Correct
- 2 points: The equilibrium angle is not correctly identified, but other relevant work is shown (e.g. recognizing that the rod behaves like an electric dipole and will rotate)

Problem 3

1 Solution

a) Using Gauss's law, the electric field do to a sphere of charge Q is

$$
\vec{E}(r)=\frac{Q}{4 \pi \epsilon_{0} r^{2}} \hat{r} .
$$

Really close to the surface of the sphere, we have $r \approx R$, so we will have

$$
\vec{E}=\frac{Q}{4 \pi \epsilon_{0} R^{2}} \hat{r} .
$$

An alternate solution uses the fact that the electric field will look like $\vec{E}=\frac{\sigma}{\epsilon_{0}} \hat{n}$ right outside of a conductor, where σ is the surface charge density and \hat{n} is the direction normal to the surface.
b) Take the system as a sphere of surface charge density σ plus a disk of surface charge density $-\sigma$. At point A , the disk looks like an infinite plane. Therefore,

$$
\vec{E}_{d i s k}=-\frac{\sigma}{2 \epsilon_{0}} \hat{r},
$$

where $\sigma=\frac{Q}{4 \pi R^{2}}$.
Using superposition,

$$
\vec{E}=\vec{E}_{\text {sphere }}+\vec{E}_{\text {disk }}=\frac{Q}{8 \pi \epsilon_{0} R^{2}} \hat{r} .
$$

c) Conservation of energy tells us that $\Delta U+\Delta \mathrm{KE}=0$. Taking the electric potential to be 0 at infinity, we have $\Delta U=q V(0)$.

Using the electric field outside of the conductor and the fact that $\vec{E}=0$ inside the shell, $V(0)=\frac{Q}{4 \pi \epsilon_{0} R}$. Therefore,

$$
\begin{aligned}
\frac{1}{2} m v^{2} & =q \frac{Q}{4 \pi \epsilon_{0} R} \\
\Rightarrow v & =\sqrt{\frac{q Q}{2 \pi \epsilon_{0} R m}}
\end{aligned}
$$

Rubric

Part A

- (1 point) Sets up Gauss's Law for the sphere
- (1 point) Correctly finds surface area of Gaussian surface
- (1 point) Uses $r=R$
- (1 point) Finds correct magnitude of electric field
- (1 point) Includes correct direction of electric field

Part B

- (2 points) Describes hole as a plane with charge density $-\sigma$
- (4 points) Correctly finds the electric field due to the disk
- (2 points) Uses superposition to find the total electric field
- (1 point) Finds correct magnitude of electric field
- (1 point) Includes correct direction of electric field

Part C

- (1 point) Sets up conservation of energy, $\Delta U+\delta \mathrm{KE}=0$
- (1 point) Uses $U=q \Delta V$
- (2 points) Correctly calculates ΔV from \vec{E} due to the sphere
- (1 point) Correctly solves for v

Problem 4

Solution

(a)

First, applying Gauss's law to figure out $\mathrm{E}(\mathrm{r})$ inside the capacitor: choosing a cylinder Gauss surface with radius r and length $h[2 \mathrm{PT}]$

$$
\oint_{S} \vec{E} \cdot d \vec{A}=2 \pi r h E(r)=Q / \epsilon_{0} \quad\left(E(r)=\frac{Q}{2 \pi \epsilon_{0} h r}\right)
$$

Then we compute the potential difference between two shells [2PT]

$$
V=\int_{a}^{b} E(r) d r \quad\left(=\frac{Q}{2 \pi \epsilon_{0} h} \ln \frac{b}{a}\right)
$$

Finally, we get the capacitance formula $[(2+1) \mathrm{PT}]$:

$$
C=\frac{Q}{V} \Rightarrow \frac{2 \pi \epsilon_{0} h}{\ln (b / a)}
$$

(b)

The energy stored in the capacitor is $[(1+1) \mathrm{PT}]$

$$
U=\int_{0}^{Q} V(q) d q=\frac{1}{C} \int_{0}^{Q} q d q \Rightarrow \frac{Q^{2}}{2 C}
$$

Inputting the value from (a), we get [2PT]

$$
U=\frac{Q^{2} \ln (b / a)}{4 \pi \epsilon_{0} h}
$$

(c)

The new system can be regarded as two capacitor connected in parallel, so the equivalent capacitance is $[(1+1) \mathrm{PT}]$

$$
\text { "Parallel" } \Rightarrow C(x)=C_{1}+C_{2}
$$

(P.S. Treating $x=d$ will just lose 2 pts here. Consequent steps not affected.) and each capacitance is [2PT]

$$
C_{1}=\frac{2 \pi \epsilon_{1} \epsilon_{0} x}{\ln (b / a)} ; \quad C_{2}=\frac{2 \pi \epsilon_{0}(h-x)}{\ln (b / a)}
$$

(P.S. Using ϵ_{1} instead of $\epsilon_{1} \epsilon_{0}$ is also acceptable with no penalty.)

Therefore [1PT]

$$
C(x)=\frac{2 \pi \epsilon_{0}\left(h+\left(\epsilon_{1}-1\right) x\right)}{\ln (b / a)}
$$

(d)

The force $F(x)$ pulls the dielectric in at the cost of capacitor's energy $U(x)$, so [2PT]

$$
F(x)=-\frac{d U(x)}{d x}
$$

(P.S. Using $F=U / d$ only get 1 pt.)

Inputting the value from (c), energy stored in the capacitor is [(1+1)PT]

$$
U(x)=\frac{Q^{2}}{2 C(x)} \Rightarrow \frac{Q^{2} \ln (b / a)}{4 \pi \epsilon_{0}\left(h+\left(\epsilon_{1}-1\right) x\right)}
$$

So the force is [2PT]

$$
F(x)=\frac{Q^{2} \ln (b / a)}{4 \pi \epsilon_{0}} \frac{\epsilon_{1}-1}{\left(h+\left(\epsilon_{1}-1\right) x\right)^{2}}
$$

Problem 5

Two identical rods of length L lie on the x-axis and carry uniform charge $+Q$ and $-Q$, as shown below.
(a) (12 pts.) Find an expression for the electric field strength as a function of position x for points to the right of the right hand rod. We can find the electric field simply by integrating

Coulomb's law.

$$
\mathbf{E}(x)=\int \frac{d q \hat{r}}{4 \pi \epsilon_{0} r^{2}}
$$

We will consider a point lying at a position x on the x-axis and integrate over charge $d q=$ $\pm Q d x^{\prime} / L$ where x^{\prime} will be our integration variable (the location of the charges in Coulomb's law). All electric field contributions lie in the \hat{x} directions. We break the integral over all charges into a sum to split up $+Q$ and $-Q$.

$$
\mathbf{E}(x)=\int_{0}^{L} \frac{Q d x^{\prime} \hat{x}}{4 \pi \epsilon_{0} L\left(x-x^{\prime}\right)^{2}}+\int_{-L}^{0} \frac{-Q d x^{\prime} \hat{x}}{4 \pi \epsilon_{0} L\left(x-x^{\prime}\right)^{2}}=\frac{Q \hat{x}}{4 \pi \epsilon_{0} L}\left(\int_{0}^{L} \frac{d x^{\prime}}{\left(x^{\prime}-x\right)^{2}}-\int_{-L}^{0} \frac{d x^{\prime}}{\left(x^{\prime}-x\right)^{2}}\right)
$$

These integrals are easy to compute after a substitution $u=\left(x^{\prime}-x\right)$, we get $\int u^{-2} d u=$ $-u^{-1}=\left(x-x^{\prime}\right)^{-1}$. Therefore

$$
\mathbf{E}(x)=\frac{Q \hat{x}}{4 \pi \epsilon_{0} L}\left(\frac{1}{x-L}-\frac{1}{x}-\frac{1}{x}+\frac{1}{x+L}\right)
$$

This is an acceptable form, but to ease later calculations, I will simplify it. Also, the problem only asks us about strength, so I'll suppress vector notation now. $\mathbf{E}(x) \rightarrow E(x)$.

$$
E(x)=\frac{Q}{4 \pi \epsilon_{0} L} \frac{x(x-L)+x(x+L)-2\left(x^{2}-L^{2}\right)}{x\left(x^{2}-L^{2}\right)}=\frac{Q L}{2 \pi \epsilon_{0} x\left(x^{2}-L^{2}\right)}
$$

Rubric: 2 pts. for writing Coulomb's law
2 pts. for writing a continuous version of Coulomb's law
3 pts. for the right substitutions in to the integral
3 pts. for the separation into two integrals and the right bounds
2 pts. for correct integration leading to the correct result
(b) (5 pts.) Show that your result has the $1 / x^{3}$ dependence of a dipole field for $x \gg L$. With our simplified form, we can see that if $x \gg L$, then $x^{2}-L^{2} \approx x^{2}$, giving us the desired x
dependence. Let's be more rigorous and use a method that works with or without simplifying our $E(x)$. Write things in terms of a small parameter $\delta=L / x$ and perform a Taylor series expansion.

$$
E(x)=\frac{Q \delta}{2 \pi \epsilon_{0} x^{2}\left(1-\delta^{2}\right)}=\frac{Q}{2 \pi \epsilon_{0} x^{2}} \delta\left(1-\delta^{2}\right)^{-1}
$$

We can now perform a Taylor expansion (i.e. use the binomial expansion) on $\left(1-\delta^{2}\right)^{-1}=$ $1+\delta^{2}+\delta^{4}+\ldots$ Taking only the first term gives us the asymptotic x dependence

$$
E(x) \approx \frac{Q L}{2 \pi \epsilon_{0} x^{3}}
$$

Rubric: 3 pts. for a correct argument about what happens when $x \gg L$ or for attempting a Taylor Series
2 pts . for the correct result in the limit $\delta \rightarrow 0$
(c) (3 pts.) What is the dipole moment of this configuration? There are 2 basic approaches to this problem - we can use the given formula for the potential form a dipole and try to match the dipole moment to our equation for $E(x)$, or we can use the formula for the dipole moment and perform an integral over the charge distribution. I'll do both.
For a dipole we are given $V=\frac{p \cos \theta}{4 \pi \epsilon_{0} r^{2}}$. We can find an electric field from this potential by taking a derivative, but we're more familiar with the other direction. Let's find the potential from our rod by integrating the electric field.

$$
V(x)=-\int_{\infty}^{x} \frac{Q L}{2 \pi \epsilon_{0} x^{\prime 3}} d x^{\prime}=\frac{Q L}{4 \pi \epsilon_{0} x^{2}}
$$

Setting this equal to the given expression for V and noting that on the x axis $\cos \theta=1$, we get

$$
p=Q L
$$

The alternative is think of the rod as the superposition of many dipoles with separation $2 x$ and charge $Q d x / L$. This is the same as using the dipole formula for a generic charge distribution $p=\sum_{i} q_{i} \mathbf{x}_{i}$. We get

$$
p=\int d p=\int d(x) d q=\int_{0}^{L} \frac{2 Q x}{L} d x=Q L
$$

The answers agree.

Rubric (method 1): 1 pt . for writing the potential of a dipole 1 pt. for comparing $E(x)$ to that potential in the limit $x \gg L$
1 pt . for the correct result
Rubric (method 2): 1 pt . for writing the formula for dipole moment
1 pt . for integrating the charge distribution to find the total dipole moment
1 pt . for the correct result
(d) (3 pts.) How would the behavior of the field change in the limit $x \gg L$ if the two rods were replaced by a single rod of length $2 L$ and charge $+Q$? If we instead have a single rod with charge Q, then far away form the rod we will see a point charge (a monopole) and the electric field will look like that of a monopole.

$$
E(x)=\frac{Q}{4 \pi \epsilon_{0} x^{2}}
$$

Rubric: 2 pts. for saying it looks like a point charge
1 pt . for providing either the full form of $E(x)$ or saying $E(x) \propto x^{-2}$

