
Physics 7B Midterm 2 Solutions - Fall 2019
Professor A. Lanzara

Problem 1

1. (5 pt) Three infinite flat sheets of charge.

(2 pt) For a single infinite flat sheet of charge, can either write or derive the
magnitude from an electric field using Gauss’ Law.∮

~E · ~dA =
qencl
ε0

E(2A) =
σA

ε0

E =
σ

2ε0
(2 pt) With three sheets, superposition is applied so that the electric field from

each sheet contributes to a region.

(1 pt) Therefore, for each region E1 = − s
2ε0

, E2 = s
2ε0

, E3 = 3s
2ε0

, and E4 = s
2ε0

pointing to the right.

2. (5 pt) Proton fired toward a charged sheet.

i. (2 pt) Force on a charge in a electric field is equal to ~F = q ~E, so the force on

the charge next to the infinite sheet is ~F = qσ
2ε0

.

ii. (3 pt) One can calculate the distance away from the sheet either by using
conservation of energy or by calculating energy from force. With conservation of energy,
one solve as such.

K = Wstop = q∆V = qEd

d =
K

qE
=

2Kε0
qσ

Alternatively, with force, one can solve for the initial velocity and the distance it takes

for that velocity to go to zero starting from K = 1
2
mv2 and v =

√
2K
m

.

F = ma =
qσ

2ε0

a =
qσ

2mε0

∆t =
v

a
=

2mε0
qσ

√
2K

m

d =
1

2
a∆t2 =

v2

2a
=
K

m

2mε0
qσ

=
2Kε0
qσ



3. (5 pt) Equipotential lines.

i. (1 pt) pt) We know that W = q∆V , therefore the order magnitude wise is (2
pt) WAB = WCD > WAC .

ii. (2 pt) We know that electric field is dependent on the density of the equipoten-
ital lines, so that the closer together they are, the stronger the field. From this, we can
see that EA > EC > EB > ED. EA > EB > EC > ED is also acceptable.

Problem 2

(a) The bar extends from x = −L to x = L and has linear charge density λ = ax (a > 0).

x = 0
x̂

d

P

If we set the potential equal to zero at spatial infinity, then the potential at point P is
given by

V =

∫
dV =

1

4πε0

∫
dq
,

where is the separation distance between a point dq on the rod and the point P .

x = 0

d

P

L− x

We write dq = λdx and, using the diagram above, =
√
d2 + (L− x)2, so

V =
a

4πε0

∫ L

−L

xdx√
d2 + (L− x)2

.

In order to use the integrals provided on the equation sheet, we need to change variables.
Define u = L− x, so that du = −dx, and adjust the limits of integration:

V =
a

4πε0

∫ 0

2L

−(L− u)du√
d2 + u2

=
a

4πε0

∫ 2L

0

(
Ldu√
d2 + u2

− udu√
d2 + u2

)
.



Referring to the equation sheet, we have

V =
a

4πε0

[
L ln

(
u+
√
d2 + u2

)∣∣∣2L
0
−
√
d2 + u2

∣∣∣2L
0

]
or

V =
a

4πε0

[
L ln

(
2L+

√
d2 + 4L2

d

)
−
√
d2 + 4L2 + d

]
.

Let’s check units: because λ = ax had dimensions of charge-per-length, a must have di-
mensions of charge-per-length2. The quantity in square brackets overall has dimensions
of length, and thus our expression does have the correct units of potential.

(b) Because the rod has a negatively charged half and a positively charged half, it has a
nonzero dipole moment. If an electric field is turned on, the rod will accordingly behave
like a dipole: it will tend to rotate to its equilibrium position, making an angle of 0◦

relative to the electric field. (Note that the problem statement asks for the equilibrium
angle relative to the electric field.)

Rubric

Part (a):

• 15 points: Correct

• 12 points: The integral for V is correctly set up but incorrectly or incompletely evalu-
ated

• 10 points: The integral for V is set up with minor errors (e.g. the limits of integration
describe the length of the rod but are incorrect, the separation distance involves L+ x
instead of L− x, etc)

• 8 points: The integral for V is set up with more significant errors (e.g. the limits
of integration do not describe the length of the rod, the separation distance has the
incorrect functional form, etc)

• 3 points: Some attempt was made to set up an expression for V (e.g. there is no
integration, an incorrect formula for V is used, the relationship between V and E is
incorrectly applied, etc)

• +1 point: Units were checked

• −1 point: Fundamental errors (e.g. V is treated as a vector quantity)

Part (b)

• 5 points: Correct

• 2 points: The equilibrium angle is not correctly identified, but other relevant work is
shown (e.g. recognizing that the rod behaves like an electric dipole and will rotate)



Problem 3

1 Solution

a) Using Gauss’s law, the electric field do to a sphere of charge Q is

~E(r) =
Q

4πε0r2
r̂.

Really close to the surface of the sphere, we have r ≈ R, so we will have

~E =
Q

4πε0R2
r̂.

An alternate solution uses the fact that the electric field will look like ~E = σ
ε0
n̂ right outside

of a conductor, where σ is the surface charge density and n̂ is the direction normal to the
surface.

b) Take the system as a sphere of surface charge density σ plus a disk of surface charge
density −σ. At point A, the disk looks like an infinite plane. Therefore,

~Edisk = − σ

2ε0
r̂,

where σ = Q
4πR2 .

Using superposition,

~E = ~Esphere + ~Edisk =
Q

8πε0R2
r̂.

c) Conservation of energy tells us that ∆U + ∆KE = 0. Taking the electric potential to be
0 at infinity, we have ∆U = qV (0).

Using the electric field outside of the conductor and the fact that ~E = 0 inside the shell,
V (0) = Q

4πε0R
. Therefore,

1

2
mv2 = q

Q

4πε0R

⇒ v =

√
qQ

2πε0Rm

Rubric

Part A

• (1 point) Sets up Gauss’s Law for the sphere

• (1 point) Correctly finds surface area of Gaussian surface



• (1 point) Uses r = R

• (1 point) Finds correct magnitude of electric field

• (1 point) Includes correct direction of electric field

Part B

• (2 points) Describes hole as a plane with charge density −σ

• (4 points) Correctly finds the electric field due to the disk

• (2 points) Uses superposition to find the total electric field

• (1 point) Finds correct magnitude of electric field

• (1 point) Includes correct direction of electric field

Part C

• (1 point) Sets up conservation of energy, ∆U + δKE = 0

• (1 point) Uses U = q∆V

• (2 points) Correctly calculates ∆V from ~E due to the sphere

• (1 point) Correctly solves for v

Problem 4

Solution

(a)

First, applying Gauss’s law to figure out E(r) inside the capacitor: choosing a cylinder Gauss
surface with radius r and length h [2pt]∮

S

~E · d ~A = 2πrhE(r) = Q/ε0

(
E(r) =

Q

2πε0hr

)

Then we compute the potential difference between two shells [2pt]

V =

∫ b

a

E(r)dr

(
=

Q

2πε0h
ln
b

a

)

Finally, we get the capacitance formula [(2+1)pt]:

C =
Q

V
⇒ 2πε0h

ln (b/a)



(b)

The energy stored in the capacitor is [(1+1)pt]

U =

∫ Q

0

V (q)dq =
1

C

∫ Q

0

qdq ⇒ Q2

2C

Inputting the value from (a), we get [2pt]

U =
Q2 ln (b/a)

4πε0h

(c)

The new system can be regarded as two capacitor connected in parallel, so the equivalent
capacitance is [(1+1)pt]

”Parallel”⇒ C(x) = C1 + C2

(P.S. Treating x=d will just lose 2 pts here. Consequent steps not affected.)

and each capacitance is [2pt]

C1 =
2πε1ε0x

ln (b/a)
; C2 =

2πε0(h− x)

ln (b/a)

(P.S. Using ε1 instead of ε1ε0 is also acceptable with no penalty.)

Therefore [1pt]

C(x) =
2πε0(h+ (ε1 − 1)x)

ln (b/a)

(d)

The force F (x) pulls the dielectric in at the cost of capacitor’s energy U(x), so [2pt]

F (x) = −dU(x)

dx

(P.S. Using F=U/d only get 1 pt.)

Inputting the value from (c), energy stored in the capacitor is [(1+1)pt]

U(x) =
Q2

2C(x)
⇒ Q2 ln (b/a)

4πε0(h+ (ε1 − 1)x)

So the force is [2pt]

F (x) =
Q2 ln (b/a)

4πε0

ε1 − 1

(h+ (ε1 − 1)x)2



Problem 5

Two identical rods of length L lie on the x-axis and carry uniform charge +Q and −Q, as
shown below.

(a) (12 pts.) Find an expression for the electric field strength as a function of position x for
points to the right of the right hand rod. We can find the electric field simply by integrating

Coulomb’s law.

E(x) =

∫
dqr̂

4πε0r2

We will consider a point lying at a position x on the x-axis and integrate over charge dq =
±Qdx′/L where x′ will be our integration variable (the location of the charges in Coulomb’s
law). All electric field contributions lie in the x̂ directions. We break the integral over all
charges into a sum to split up +Q and −Q.

E(x) =

∫ L

0

Qdx′x̂

4πε0L(x− x′)2
+

∫ 0

−L

−Qdx′x̂
4πε0L(x− x′)2

=
Qx̂

4πε0L

(∫ L

0

dx′

(x′ − x)2
−
∫ 0

−L

dx′

(x′ − x)2

)

These integrals are easy to compute after a substitution u = (x′ − x), we get
∫
u−2du =

−u−1 = (x− x′)−1. Therefore

E(x) =
Qx̂

4πε0L

(
1

x− L
− 1

x
− 1

x
+

1

x+ L

)
This is an acceptable form, but to ease later calculations, I will simplify it. Also, the problem
only asks us about strength, so I’ll suppress vector notation now. E(x)→ E(x).

E(x) =
Q

4πε0L

x(x− L) + x(x+ L)− 2(x2 − L2)

x(x2 − L2)
=

QL

2πε0x(x2 − L2)

Rubric: 2 pts. for writing Coulomb’s law
2 pts. for writing a continuous version of Coulomb’s law
3 pts. for the right substitutions in to the integral
3 pts. for the separation into two integrals and the right bounds
2 pts. for correct integration leading to the correct result



(b) (5 pts.) Show that your result has the 1/x3 dependence of a dipole field for x � L.
With our simplified form, we can see that if x� L, then x2−L2 ≈ x2, giving us the desired x

dependence. Let’s be more rigorous and use a method that works with or without simplifying
our E(x). Write things in terms of a small parameter δ = L/x and perform a Taylor series
expansion.

E(x) =
Qδ

2πε0x2(1− δ2)
=

Q

2πε0x2
δ(1− δ2)−1

We can now perform a Taylor expansion (i.e. use the binomial expansion) on (1 − δ2)−1 =
1 + δ2 + δ4 + .... Taking only the first term gives us the asymptotic x dependence

E(x) ≈ QL

2πε0x3

Rubric: 3 pts. for a correct argument about what happens when x� L or for attempting a
Taylor Series
2 pts. for the correct result in the limit δ → 0

(c) (3 pts.) What is the dipole moment of this configuration? There are 2 basic approaches
to this problem - we can use the given formula for the potential form a dipole and try to
match the dipole moment to our equation for E(x), or we can use the formula for the dipole
moment and perform an integral over the charge distribution. I’ll do both.

For a dipole we are given V = p cos θ
4πε0r2

. We can find an electric field from this potential by
taking a derivative, but we’re more familiar with the other direction. Let’s find the potential
from our rod by integrating the electric field.

V (x) = −
∫ x

∞

QL

2πε0x′3
dx′ =

QL

4πε0x2

Setting this equal to the given expression for V and noting that on the x axis cos θ = 1, we
get

p = QL

.

The alternative is think of the rod as the superposition of many dipoles with separation
2x and charge Qdx/L. This is the same as using the dipole formula for a generic charge
distribution p =

∑
i qixi. We get

p =

∫
dp =

∫
d(x)dq =

∫ L

0

2Qx

L
dx = QL



The answers agree.

Rubric (method 1): 1 pt. for writing the potential of a dipole
1 pt. for comparing E(x) to that potential in the limit x� L
1 pt. for the correct result

Rubric (method 2): 1 pt. for writing the formula for dipole moment
1 pt. for integrating the charge distribution to find the total dipole moment
1 pt. for the correct result

(d) (3 pts.) How would the behavior of the field change in the limit x� L if the two rods
were replaced by a single rod of length 2L and charge +Q? If we instead have a single rod
with charge Q, then far away form the rod we will see a point charge (a monopole) and the
electric field will look like that of a monopole.

E(x) =
Q

4πε0x2

Rubric: 2 pts. for saying it looks like a point charge
1 pt. for providing either the full form of E(x) or saying E(x) ∝ x−2


	Solution

