Mathematics 53. Fall Semester 2018

Midterm 1 solutions

(20) 1. Consider the parametric curve in polar coordinates

$$
r=\cos ^{2} \theta, \quad \theta \in[0,2 \pi]
$$

a) Sketch the curve.
b) Compute the area enclosed by the curve.
c) Find the slope of the curve at $\theta=\frac{\pi}{2}$.

Solution:

a) Here it is advisable to either plot several points, or to graph first the function $r=\cos ^{2} \theta$. Our curve is as follows:
b) The area is given by

$$
\begin{aligned}
A & =\frac{1}{2} \int_{0}^{2 \pi} r^{2} d \theta=\frac{1}{2} \int_{0}^{2 \pi} \cos ^{4} \theta d \theta \\
& =\frac{1}{8} \int_{0}^{2 \pi}(1+\cos (2 \theta))^{2} d \theta=\frac{1}{8} \int_{0}^{2 \pi} 1+2 \cos (2 \theta)+\cos ^{2}(2 \theta) d \theta \\
& =\frac{1}{8} \int_{0}^{2 \pi} 1+2 \cos (2 \theta)+\frac{1}{2}(1+\cos (4 \theta)) d \theta \\
& =\frac{1}{8} \frac{3}{2} \theta+\sin (2 \theta)+\left.\frac{1}{8} \sin (4 \theta)\right|_{0} ^{2 \pi}=\frac{3 \pi}{8}
\end{aligned}
$$

c) The slope at any given point is evaluated using a consequence of the chain rule,

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d y}{d \theta}}
$$

We have $x=\cos ^{3} \theta$ and $y=\sin \theta \cos ^{2} \theta$, so the slope is

$$
a(\theta)=\frac{-2 \sin ^{2} \theta \cos \theta+\cos ^{3} \theta}{-3 \sin \theta \cos ^{2} \theta}=\frac{2 \sin ^{2} \theta-\cos ^{2} \theta}{3 \sin \theta \cos \theta}
$$

At $\theta=\frac{\pi}{2}$ this is indetermined. However, we can compute the limit on the left

$$
\lim _{\text {theta } \backslash \frac{\pi}{2}} a(\theta)=+\infty
$$

and on the right

$$
\lim _{\text {theta } \searrow \frac{\pi}{2}} a(\theta)=-\infty
$$

and in both cases we see that the slope is infinite, in other words the tangent line to our curve is
(20) 2. Consider the points $P=(0,1,1)$ and $Q=(1,0,1)$, and let u, v be their position vectors. Calculate/describe:
a) The triple product $u \cdot(v \times u)$.
b) The area of the parallelogram with sides u, v.
c) The parametric line L through P in the direction v.
d) The distance between the point Q and the line L.

Solution:

a) The triple product is zero since two of the vectors coincide.
b) The area is given by $A=|u \times v|$. We compute the cross product

$$
u \times v=\left|\begin{array}{ccc}
i & j & k \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right|=i+j-k
$$

so $A=\sqrt{3}$.
c) The parametric line is given by:

$$
x(t)=t, \quad y(t)=1, \quad z(t)=1+t
$$

d) The distance d between a point on L and Q is given by

$$
d^{2}=(t-1)^{2}+1+t^{2}=2 t^{2}-2 t+2=2\left(t-\frac{1}{2}\right)^{2}+\frac{3}{2}
$$

This is minimized at $t=\frac{1}{2}$, and the minimum is

$$
d_{\min }=\sqrt{3 / 2}
$$

3. Consider the parametric curve $\mathbf{r}(t)=\left(2 t, \log t, t^{2}\right)$ for $t \in[1,4]$.
a) Find its length.
b) Find its curvature at $t=1$.
c) Find its unit tangent and normal vector, also at $t=1$.

Solution: a) We have

$$
\mathbf{r}^{\prime}(t)=\left(2, \frac{1}{t}, 2 t\right), \quad\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{\frac{1}{t^{2}}+4+4 t^{2}}=\frac{1}{t}+2 t
$$

(here we note that $1+2 t>0$ for $t \in[1,4]$). Then the length is

$$
L=\int_{1}^{4}\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{1}^{4} \frac{1}{t}+2 t d t=\ln t+\left.t^{2}\right|_{1} ^{4}=15+\ln 4
$$

b) The curvature is

$$
\kappa=\frac{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|}{\left|\mathbf{r}^{\prime}\right|^{3}}
$$

We have

$$
\mathbf{r}^{\prime \prime}=\left(0,-\frac{1}{t^{2}}, 2\right)
$$

and

$$
\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}=\left|\begin{array}{ccc}
i & j & k \\
2 & \frac{1}{t} & 2 t \\
0 & -\frac{1}{t^{2}} & 2
\end{array}\right|=\frac{4}{t} i-4 j-\frac{2}{t^{2}} k, \quad\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|=\sqrt{\frac{4}{t^{4}}+\frac{16}{t^{2}}+16}=\frac{2}{t^{2}}+4
$$

Hence the curvature at $t=1$ is

$$
\kappa=\frac{6}{27}=\frac{2}{9} .
$$

c) The unit tangent vector is

$$
T(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}=\left(\frac{2 t}{1+2 t^{2}}, \frac{1}{1+2 t^{2}}, \frac{2 t^{2}}{1+2 t^{2}}\right)
$$

The unit normal vector N is given by

$$
N=\frac{T^{\prime}}{\left|T^{\prime}\right|}
$$

We compute

$$
T^{\prime}(t)=\left(\frac{2-4 t^{2}}{\left(1+2 t^{2}\right)^{2}}, \frac{-4 t}{\left(1+2 t^{2}\right)^{2}}, \frac{4 t}{\left(1+2 t^{2}\right)^{2}}\right)
$$

At $t=1$ we have

$$
T=\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right), \quad T^{\prime}=\left(\frac{-2}{9}, \frac{-4}{9}, \frac{4}{9}\right), \quad N=\left(-\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right) .
$$

To double check, one may verify that T and N are orthogonal.
4. Let S be the surface

$$
\begin{equation*}
x^{2}-y^{2}+z^{2}=1 \tag{20}
\end{equation*}
$$

a) Identify it and sketch it.
b) Find the equation of its tangent plane at the point (1,2,2).

Solution: a) The surface is a hyperboloid with one sheet, which intersects the $x-z$ plane on the unit circle but does not intersect the y axis:

b) S is a level set of the function $f(x, y, z)=x^{2}-y^{2}+z^{2}$ with gradient

$$
\nabla f=(2 x,-2 y, 2 z) .
$$

The gradient is perpendicular to the tangent plane, so at $(1,2,2)$ the normal vector is $(2,-4,4)$. Hence, the equation of the tangent plane is

$$
2(x-1)-4(y-2)+4(z-2)=0
$$

or equivalently

$$
x-2 y+2 z=1 \text {. }
$$

5. Consider the function $f(x, y)=2 x^{3}+y^{2}-6 x y+4 y$.
a) Find its local maximum and minimum values and saddle points.
b) Find its global maximum and minimum inside the triangle with vertices $(0,0),(0,6)$ and $(6,0)$.

Solution:

a) We have

$$
f_{x}=6 x^{2}-6 y, \quad f_{y}=2 y-6 x+4 .
$$

To find the critical points we set both to zero and solve for (x, y). From the second equation $y=3 x-2$, and substituting in the first we get

$$
x^{2}-3 x+2=0
$$

which has two solutions $x=1,2$. Then the critical points are

$$
P=(1,1), \quad Q=(2,4) .
$$

To classify them we use the second derivative test. We have

$$
f_{x x}=12 x, \quad f_{y y}=2, \quad f_{x y}=-6
$$

and

$$
D=f_{x x}+f_{y y}-f_{x y}^{2}=24 x-36
$$

Verifying the signs of $f_{x x}, f_{y y}$ and D at P and Q we see that P is a saddle point and Q is a local minimum point.
b) Here we need to check what happens inside the triangle and on its boundary. Inside we only have the point P, which cannot be a min or a max. On the boundary we consider the three sides: .

i) On $O R$ we have $y=0$ and $x \in[0,6]$. Then $f(x, y)=2 x^{3}$, which has no critical points inside $(0,6)$.
ii) On $O S$ we have $x=0$ and $y \in[0,6]$. Then $f(x, y)=y^{2}+4 y$, which has no critical points inside $(0,6)$.
iii) On $R S$ we have $y=6-x$ and $x \in[0,6]$. Then

$$
f(x, y)=g(x)=2 x^{3}+(x-6)^{2}-6 x(6-x)+4(6-x)=2 x^{3}+7 x^{2}-52 x+24
$$

We compute

$$
g^{\prime}(x)=6 x^{2}+14 x-52=(x-2)(6 x+26)
$$

(here we knew that 2 must be a root since $Q \in R S$) which has the critical point $x=2$ inside $(0,6)$. This corresponds to $y=4$, so we have recovered the point Q. [One could also use Lagange multipliers for this last part.]

To summarize, our candidates for $\min /$ max remain the points O, R, S, Q. We evaluate f,

$$
f(O)=0, \quad f(R)=432, \quad f(S)=88, \quad f(Q)=0
$$

Hence the minimum of f over the triangle is 0 and the maximum is 432 .

