
Mathematics 53. Fall Semester 2018 Professor: Daniel Tataru

Final Exam Solutions

1(25) . a) (5) For a function f(x, y) in R2
define its Laplacian �f (also denoted in the book by

r2
f).

Solution: We have

�f = r ·rf =
@
2
f

@2
x

+
@
2
f

@2
x

b) (10) Let g be a twice di↵erentiable function of one variable and f(x, y) = g(r) where r is

the radius in polar coordinates. Compute the expression �f in terms of g and its derivatives.

Solution: We first use chain rule to compute
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(r)
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and then di↵erentiate again
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By symmetry,
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Summing up the last two relations,

�f = g
00
(r) +

1

r
g
0
(r)

c) (10) Check whether the function f(x, y) = ln(x
2
+ y

2
) solves the Laplace equation �f = 0.

Solution:
We apply part (b) with g(r) = ln(r

2
) = 2 ln r. Then

g
0
(r) =

2

r
, g

00
(r) = � 2

r2

therefore

� ln(x
2
+ y

2
) =

2

r2
� 2

r2
= 0.

Hence f solves the Laplace equation.

 



2(25) . An asteroid A is described by the equation

x
2
+ 2y

2
+ 3z

2  1.

a) (5) What is the shape of the asteroid ? Sketch it !

Solution: This is an ellipsoid:

b) What is the equation for the tangent plane at some point Q = (x0, y0, z0) on the surface ?

Solution:
Given a point Q = (x0, y0, z0) on the surface, the tangent plane P has the equation

P : xx0 + 2yy0 + 3zz0 = 1

c) (10) What are the points on its surface which are visible from a spaceship located at coor-

dinates S = (1, 1, 1)?

Solution: A point Q on the surface is visible from the spaceship if the tangent plane at

that point separates the asteroid from the spaceship. The above plane P separates R3
into two

half-spaces

H1 = {xx0 + 2yy0 + 3zz0  1}, H2 = {xx0 + 2yy0 + 3zz0 � 1}

We have (0, 0, 0) 2 H1 so A ⇢ H1. Hence the point Q is visible from S if S 2 H2. This gives the

equation

x+ 2y + 3z � 1.

Hence the set V of visible points on the surface is

V = {x2
+ 2y

2
+ 3z

2
= 1, x+ 2y + 3z � 1.}
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3(20) . Consider the curve � which is the portion of the intersection of the hyperboloid H =

{x2
+ y

2 � z
2
= 1} with the cylinder C = {y = x

2} between the points P = (�1, 1, 1) and

Q = (1, 1, 1).

a) Find the direction of the tangent vector to � at (1, 1, 1).

Solution: The tangent line to � at Q is the intersection of the tangent planes to H and C

at Q. These have normals NH = (2, 2,�2) respectively NC = (2,�1, 0), which are obtained by

computing the gradients of the defining functions above, namely x
2
+ y

2 � z
2
and x

2 � y. Then a

tangent vector to � is given by

T = NH ⇥NC = (�2,�4,�6)

b) Evaluate the integral

I =

ˆ
�

F · dr, F =

✓
1

1 + y + z
,� x

(1 + y + z)2
, 2z � x

(1 + y + z)2

◆

Solution: The vector field F is easily seen to be conservative,

F = rf, f(x, y, z) =
x

1 + y + z
+ z

2

Then

I =

ˆ
�

F · dr = f(Q)� F (P ) =
2

3

Note: There was a subtle typo in part (b), which is that the point P should have been

(1, 1,�1). This is because the intersection of the two surfaces consists of two separate curves, and

as given the points P and Q are on di↵erent curves. If you did not notice that and solved the

problem as above you get full credit. If instead you observed this issue and concluded that the

problem cannot be solved then you also get full credit. Partial credit will be awarded for progress

in either direction.



4(20) . Find the maximum of the function

f(x, y, z) = xyz + x+ y + z

within the sphere S = {x2
+ y

2
+ z

2  1}.

Solution: We first look for critical points inside the sphere. This gives the equation rf = 0,

i.e.

1 + yz = 0, 1 + xz = 0, 1 + xy = 0

or

yz = �1, xz = �1, xy = �1.

This has no solutions, as is easily seen by multiplying the three equations to obtain x
2
y
2
z
2
= �1.

Thus there are no critical points inside. It remains to look for critical points on the boundary @S.

We use Lagrange multipliers, obtaining the equations

1 + yz = 2�x, 1 + xz = 2�y, 1 + xy = 2�z.

Subtracting the first two equations we get

z(y � x) = 2�(x� y),

therefore

x = y or z = �2�

We also obtain all circular permutations of this. Examining all possibilities, we must have either

x = y = z or x = y = �2� (or some permutation of the latter). In the first case using the equation

of the unit sphere x
2
+ y

2
+ z

2
= 1 we obtain either

x = y = z =
1p
3

or

x = y = z = � 1p
3

In the second case, we must have z =
1 + 4�

2

2�
which is not acceptable as it would give |z| � 2,

not possible on the sphere.

So we have two critical points,

P = (
1p
3
,
1p
3
,
1p
3
), Q = (� 1p

3
,� 1p

3
,� 1p

3
)

Evaluating f at the two points we have

f(P ) =
10

3
p
3
, f(Q) = � 10

3
p
3
.

The largest of these is the maximum of f inside S.



5(30) . Evaluate the following integrals:

a)

I =

ˆ 1

0

ˆ 1

0

sin(max{x2
, y

2}) dx dy

Solution: The argument of sine is x
2
or y

2
depending on which is larger. So we split our

integral in two symmetric regions,

D1 = {0  x  y  1}, D2 = {0  x  y  1},

Then we have

I = 2

¨
D1

sin(y
2
)dV =

ˆ 1

0

ˆ
y

0

2 sin(y
2
) dx dy =

ˆ 1

0

2y sin(y
2
) dy = � cos(y

2
)

���
1

0
= 1� cos 1.

b)

J =

ˆ 1

0

ˆ p
1�z2

0

ˆ p
1�y2

z

x
2
y dx dy dz

Solution: We examine the integration domain D, which is described by the relations

D = {0  z  1, 0  y 
p
1� z2, z  x 

p
1� y2}

We rewrite it as

D = {x, y, z � 0, y
2
+ z

2  1, z  x, x
2
+ y

2  1}

and finally as

D = {x, y � 0, 0  z  x, x
2
+ y

2  1}

Using cylindrical coordinates in D, we have

J =

˚
D

x
2
y dV

=

ˆ ⇡
2

0

ˆ 1

0

ˆ
r cos ✓

0

r
3
cos

2
✓ sin ✓ rdz dr d✓

=

ˆ ⇡
2

0

ˆ 1

0

r
5
cos

3
✓ sin ✓ dr d✓

=
1

4

ˆ ⇡
2

0

cos
3
✓ sin ✓ d✓ ·

ˆ 1

0

r
5
dr

=
1

4
· 1
4
· 1
6

=
1

96



6(15) . Let ⌦ be the solid bounded from above by the sphere x
2
+ y

2
+ z

2
= 2 and from below by

the paraboloid z = x
2
+ y

2
. Find its volume.

Solution: We need to compute

V =

˚
D

1 dV

We represent ⌦ as

⌦ = {x2
+ y

2  z 
p

2� x2 � y2}

Then (x, y) must be in the domain

D = {x2
+ y

2  1}

Thus we have

V =

¨
D

(

p
2� x2 � y2 � (x

2
+ y

2
))dA

In polar coordinates this becomes

V =

ˆ 2⇡

0

ˆ 1

0

(

p
2� r2 � r

2
)r dr d✓ = 2⇡(�1

3
(2� r

2
)
3
2 � 1

4
r
4
)

���
1

0
=

2⇡

3
(2

3
2 � 1)� ⇡

2
=

8
p
2� 7

6



7(25) . a) (10) Carefully state Stokes’s Theorem.

b) (15) The curve C is the intersection of the cylinder x
2
+y

2
= 1 with the hyperbolic paraboloid

z = x
2 � y

2

taken with the counterclockwise orientation. Evaluate the line integral

I =

˛
C

F · dr, F = (x� y, x+ y, z
7
)

Solution: We use Stokes’ theorem for the surface

S = {z = x
2 � y

2
, x

2
+ y

2
= 1}

with the orientation induced by the upward normal. Then

˛
C

F · dr =
¨

S

curl F · dS

We have curlF = (0, 0, 2), while, since S is the graph of the function f(x, y) = x
2 � y

2
in the

domain D = {x2
+ y

2  1},
dS = (�fx,�fy, 1) dxdy

Hence we obtain

I =

¨
D

2 dA = 2⇡



8(20) . Consider a pizza given by the planar domain

D = {4x2
+ y

2  4y}

and with density ⇢(x, y) = 4y � y
2
. Find its mass.

Solution: We need to compute the integral

m =

¨
D

4y � y
2
dA

Completing the squares, we write

D = {4x2
+ (y � 2)

2  4}

which is an ellipse centered at (0, 2). For this it is natoral to introduce coordinates

x = r cos ✓, y = 2 + 2r sin ✓, r 2 [0, 1], ✓ 2 [0, ⇡]

where the Jacobian is easily computed as

J =
@(x, y)

@(r, ✓)
= 2r

Then

dA = 2r dr d✓

Hence changing coordinates we get

m =

ˆ 2⇡

0

ˆ 1

0

4(1� r
2
sin

2
✓) 2r dr d✓ = 8⇡ � 2⇡ = 6⇡



9(20) . Evaluate the integral

I =

¨
S

z
2018

dS, S = {x2
+ y

2
+ z

2
= 1}

Solution 1: [ As a surface integral] Using spherical coordinates

r = (sin� cos ✓, sin� sin ✓, cos�)

we compute

r� = (� cos� cos ✓,� cos� cos ✓, sin�), r✓ = (� sin� sin ✓, sin� cos ✓, 0)

and

r� ⇥ r✓ = (� sin
2
� cos ✓, sin

2
� sin ✓,� sin� cos�), |r� ⇥ r✓| = sin�

Hence

I =

ˆ 2⇡

0

ˆ
⇡

0

cos�
2018

sin� d� d✓ = 2⇡

ˆ 1

�1

u
2018

du =
4⇡

2019

where we have substituted u = � cos�.

Solution 2: [ Using the divergence theorem] The normal vector to the sphere is n = (x, y, z).

Hence defining F = (0, 0, z
2017

) we have F · n = z
2018

. Thus

I =

ˆ
S

F · dS.

Since div F = 2017z
2016

, by the divergence theorem we get

I =

ˆ
B

2017z
2016

dV, B = {x2
+ y

2
+ z

2  1}

In spherical coordinates this becomes

I =

ˆ 2⇡

0

ˆ
⇡

0

ˆ 1

0

2017(⇢ cos�)
2016

⇢
2
sin� d⇢ d� d✓

and the integration in ⇢ and � yields the same result as above.


