UC Berkeley - Computer Science

CS61B: Data Structures
Final, Spring 2019
This test has 12 questions across 16 pages worth a total of 800 points, and is to be completed in 170 minutes. The exam is closed book, except that you are allowed to use three double sided written cheat sheets (front and back). No calculators or other electronic devices are permitted. Give your answers and show your work in the space provided. Write the statement out below in the blank provided and sign. You may do this before the exam begins.
"I have neither given nor received any assistance in the taking of this exam."

Signature: \qquad

$\#$	Points	$\#$	Points
0	1	7	84
1	98	8	68
2	43	9	58
3	62	10	73
4	51	11	83
5	50	12	130
6	0		
	TOTAL	800	

Name:
SID: \qquad
GitHub Account \# : sp19-s___
Person to Left's \# : sp19-s \qquad
Person to Right's \#: sp19-s____
Exam Room: \qquad

Tips:

- There may be partial credit for incomplete answers. Write as much of the solution as you can, but bear in mind that we may deduct points if your answers are much more complicated than necessary.
- There are a lot of problems on this exam. Work through the ones with which you are comfortable first. Do not get overly captivated by interesting design issues or complex corner cases you're not sure about.
- Not all information provided in a problem may be useful, and you may not need all lines.
- Unless otherwise stated, all given code on this exam should compile. All code has been compiled and executed before printing, but in the unlikely event that we do happen to catch any bugs in the exam, we'll announce a fix. Unless we specifically give you the option, the correct answer is not 'does not compile.'
- \bigcirc indicates that only one circle should be filled in.
- \square indicates that more than one box may be filled in.
- For answers which involve filling in a \bigcirc or \square, please fill in the shape completely.
- There is a separate reference sheet with data structures you can use throughout the test.
 © $]$]. on the spectrum between $\theta_{\text {and }}$. .

After exam: [${ }^{2}$ \qquad ©
0. So it begins (1 point). Write your name and ID on the front page. Write the exam room. Write the IDs of your neighbors. Write the given statement and sign. Write your login in the corner of every page. Enjoy your free point () .

1. Sorting Cornucopia.

a) Suppose we want to in-place heap sort the array [9, 1, 1, 3, 5, 5, 6, 8] so that it is in ascending order.
i) (14 points). Give the result after bottom-up heapifying the array so that it is a max heap. If you don't remember what bottom up heapification is, you may give any valid max-heap ordering for this array for partial credit.

ii) ($\mathbf{1 2}$ points). Show the array after one "remove largest" operation (i.e. after one item has been deleted during the in-place heapsort process). Your answer will be graded based on your answer to part i above.

b) (9 points). Suppose we use merge sort instead to sort [9, 1, 1, 3, 5, 5, 6, 8]. Give the two arrays that will be merged by the final step of merge sort. In case of a tie, assume the merge operation uses the left item.

c) ($\mathbf{1 0}$ points). One approach to sorting is to insert all of our items into a TreeSet<Integer>, then to iterate over the TreeSet, taking advantage of the fact that iteration is an in-order traversal of the tree. Would this approach yield the correct answer for [9, 1, 1, 3, 5, 5, 6, 8] ? If not, explain why not.
\bigcirc Yes, it will work. No it will not work because: \qquad
d) ($\mathbf{9}$ points). For this specific array [9, 1, 1, 3, 5, 5, 6, 8] which sort do you think will be fastest in nanoseconds? Why? Assume all sorts are as described in lecture. Assume Quicksort uses Tony Hoare's partitioning scheme and shuffling.
\bigcirc Insertion sort \bigcirc Selection sort \bigcirc Merge sort \bigcirc Quick sort \bigcirc Heap sort

Why: \qquad
e) ($\mathbf{1 4}$ points). Suppose we partition the array $[4,5,1,3,7,2,6]$, using 4 as our pivot. Which of the following are possible outcomes after a single partitioning operation has completed, i.e. which of the following are valid partitions on the value 4 ? For each row, state whether the result is possible for Tony Hoare's partitioning scheme, possible for some other partitioning algorithm (and not for Tony Hoare's), or impossible for all partitioning schemes.

	Possible using Tony Hoare's partitioning algorithm.	Not possible using Tony Hoare's partitioning algorithm, but possible with some other partitioning algorithm.	Impossible for all partitioning algorithms.
$\left[\begin{array}{lllllll}4 & 5 & 1 & 3 & 7 & 2 & 6\end{array}\right]$	\bigcirc	\bigcirc	\bigcirc
$\left[\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}\right]$	\bigcirc	\bigcirc	\bigcirc
$\left[\begin{array}{lllllll}1 & 7 & 5 & 3 & 4 & 2 & 6\end{array}\right]$	\bigcirc	\bigcirc	\bigcirc
$\left[\begin{array}{lllllll}1 & 3 & 4 & 2 & 5 & 7 & 6\end{array}\right]$	\bigcirc	\bigcirc	\bigcirc
$\left[\begin{array}{lllllll}1 & 3 & 4 & 2 & 5 & 6 & 7\end{array}\right]$	\bigcirc	\bigcirc	\bigcirc
$\left[\begin{array}{lllllll}2 & 1 & 3 & 4 & 5 & 7 & 6\end{array}\right]$	\bigcirc	\bigcirc	\bigcirc
$\left[\begin{array}{lllllll}3 & 2 & 1 & 4 & 7 & 5 & 6\end{array}\right]$	\bigcirc	\bigcirc	\bigcirc

f) (9 points). Suppose we merge the arrays $[1,7,8,9]$ and $[2,3,4,5]$ using the procedure from class. Which of the following are true? State True or False for each.

True \bigcirc False
\bigcirc True \bigcirc False
\bigcirc True \bigcirc False
\bigcirc True \bigcirc False

The result will be in sorted order.
1 will be compared to another element exactly once.
2 will be compared to 3 .
7 total comparisons will be made.
g) (21 points). Now suppose we merge the arrays [1789] and [A B C D] using the procedure from class, where $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D are integers, not necessarily in order relative to each other. Which of the following are true? State True, False, or CBD for "Cannot Be Determined".
\bigcirc True \bigcirc False \bigcirc CBD 1 will be compared to another element exactly once.
\bigcirc True \bigcirc False \bigcirc CBD A will be compared to B.
\bigcirc True \bigcirc False \bigcirc CBD 7 total comparisons will be made.
\bigcirc True \bigcirc False \bigcirc CBD In the result, 1 will be in the correct order relative to A .
\bigcirc True \bigcirc False \bigcirc CBD In the result, C will be in the correct order relative to 1 .
\bigcirc True \bigcirc False $\bigcirc \mathrm{CBD} \quad$ In the result, 8 will be in the correct order relative to A .
2. Radix Sorting. Consider the array of integers below:

123	723	175	394	763

a) (9 points). Show the output after using counting sort on the rightmost digit only. Please check your numbers carefully. We will not give partial credit for answers where you accidentally wrote the wrong number, e.g. if you write " 129 " you will receive no credit since 129 is not in the list above.

b) (9 points). Show the output after two passes of counting sort in LSD radix sorting. In other words, after we have used counting sort on the rightmost digit, then the middle digit.

c) (7 points). In class, we used counting sort as our subroutine for radix sorting. However, we could also have used another sort, for example, insertion sorting. For example, give the result after insertion sorting ONLY by the leftmost digit of the original array at the top of the page. That is, when we compare two numbers in insertion sort, use only the leftmost digit when comparing the two numbers. You should start from the array at the top of the page $[123,723,175,394,763]$. Assume insertion sort is the same as taught in lecture, e.g. sorting an array of all duplicate items completes in $\Theta(\mathrm{N})$ time.

d) (18 points). Suppose we use heapsort as our subroutine for radix sort, yielding two new algorithms LSD-Radix-Heap-Sort and MSD-Radix-Heap-Sort.

Are these algorithms guaranteed to yield correct results on all inputs, not just the one at the top of this page? If not, briefly explain why not.

Yes, LSD-Radix-Heap-Sort will work correctly on all outputs.
No, LSD-Radix-Heap-Sort can fail because: \qquadYes, MSD-Radix-Heap-Sort will work correctly on all outputs.
O No, MSD-Radix-Heap-Sort can fail because: \qquad

3. MSTs, SPTs.

Consider the graph below, which we will call G. Throughout this problem, refer to each edge by its weight, e.g. 100 refers to the edge at the top right of the image.

a) ($\mathbf{1 4}$ points). Give the edges of the minimum spanning tree for G in the order that they'd be added by Prim's algorithm, starting from the vertex with a circle (in the middle). As noted above, refer to each edge by its weight, e.g. 100 refers to the edge at the top right of the image. You may not need all blanks.
b) ($\mathbf{1 4}$ points). Suppose we find the shortest paths (SPT) tree starting from the circle vertex in graph G. Is this SPT also the MST of G? If yes, select yes. If no, give an example of an edge that is in the circle vertex's SPT but not in the minimum spanning tree.YesNo, edge \qquad is in the SPT for the circle vertex, but not in the MST of G.
c) ($\mathbf{1 4}$ points). Suppose we subtract 1000 from every edge weight in the graph above, yielding a new graph G'. Do the MSTs for G and G' contain the exact same set of edges? Do not worry about edge order. Note that an edge is defined by the vertices it connects, not its weight, so you can't just say "no" simply because the weights are all different.Yes, they have the same MST
O No, edge \qquad is in the MST for the original graph G, but the corresponding edge with 1000 subtracted is not in the MST for G'.
d) ($\mathbf{1 0}$ points). True or False: In a weighted undirected graph with non-negative weights, the smallest edge touching a given vertex is always in the MST.True False
e) ($\mathbf{1 0}$ points). True or False: In a weighted directed graph with non-negative weights, the smallest edge leaving a given vertex is always in the SPT for that vertex.True False
4. Binary Search Tree Removal Redux. On midterm 2, you wrote a deleteMin method for a binary search tree, shown below. Also shown is the definition for the TreeNode class.

```
/** Deletes the smallest item from a BST rooted at x. Returns the
    * root of the BST after deletion. */
    private TreeNode deleteMin(TreeNode x) {
        if (x.left == null) { return x.right; }
        x.left = deleteMin(x.left);
        return x;
    }
    public class TreeNode {
        public TreeNode left;
        public TreeNode right;
        public int item;
    }
```

a) ($\mathbf{1 8}$ points). Complete the min method for a binary search tree as described below.
/* Returns the TreeNode with smallest item in a BST rooted at x. */
public TreeNode min(TreeNode x) \{
if (x == null) \{ return null; \}
if (__)
) \{
return
\qquad
\}
b) ($\mathbf{3 3}$ points). Complete the hibbardDelete method below. You may use (but might not need) min and deleteMin from above. You can assume min and deleteMin are implemented correctly, regardless of your answer from previous parts.

```
/** This method deletes the root item in a BST rooted at x.
    * Assumes x has two non-null children.
    * Uses the Hibbard Deletion process from class, picking the successor. */
public void hibbardDelete(TreeNode x) {
        TreeNode successor =
```

\qquad
\qquad
\qquad

```
    }
```

For example, if we call hibbardDelete (p2) on the figure below, we'd get the result shown. Note the values of the p1 and p2 variables are not shown after the operation. Hint: What happens if we delete p1?

5. (50 points). Implementation Details.

For each of the pairs of choices below, give the primary reason that we prefer the first choice over the second. There may be more than one answer that is correct - if so, choose the best one.

When storing a heap in an array (tree representation 3), placing the first item at index 1 instead of index 0.	\bigcirc Guarantees correctness \bigcirc Improves runtime \bigcirc Reduce memory use \bigcirc Simplifies code
In Dijkstra's algorithm: visiting vertices in order of increasing distance from source instead of decreasing distance.	Guarantees correctness \bigcirc Improves runtime Reduce memory use \bigcirc Simplifies code
Considering the left child before the right child if the query point is to the left of the current node during a nearest query on a KdTree implementation that has implemented all of our pruning rules.	Guarantees correctness \bigcirc Improves runtime Reduce memory use \bigcirc Simplifies code
Shuffling the input before beginning Quicksort instead of not shuffling.	Guarantees correctness \bigcirc Improves runtime Reduce memory use \bigcirc Simplifies code
Rotating after inserting a new item into a BST, instead of not rotating.	Guarantees correctness \bigcirc Improves runtime Reduce memory use \bigcirc Simplifies code
Resizing a hash table after a removal operation, instead of not resizing.	\bigcirc Guarantees correctness \bigcirc Improves runtime Reduce memory use \bigcirc Simplifies code
Using A* instead of Dijkstra's algorithm to find the shortest path from s to t.	\bigcirc Guarantees correctness \bigcirc Improves runtime Reduce memory use \bigcirc Simplifies code
Implementing a priority queue using a heap instead of an ordered array.	\bigcirc Guarantees correctness \bigcirc Improves runtime \bigcirc Reduce memory use \bigcirc Simplifies code
Using double links (next and prev) in every node instead of only single links (next) in a LinkedListDeque implementation.	\bigcirc Guarantees correctness \bigcirc Improves runtime \bigcirc Reduce memory use \bigcirc Simplifies code
Using sentinel nodes in a LinkedListDeque implementation instead of using first and last pointers that point directly to the nodes containing the first and last items in the deque.	Guarantees correctness \bigcirc Improves runtime Reduce memory use \bigcirc Simplifies code

6. (0 points). PNH. The standard musical scale is known as twelve-tone equal temperament. In this system, there are 12 evenly spaced musical notes that divide up an octave. What spooky sounding musical scale has instead 13 evenly spaced musical notes that divide up a tritave?

Note: A tritave is like an octave, but it's 3x the frequency instead of 2x. For example, 440 hz and 1320 hz are one tritave apart. Note \#2: If you want to hear a listenable song using this scale, check out "Orbital" by Sevish.
7. DisjointSets. The version of DisjointSets that we created in lecture assumed that the items were numbered from 0 to $\mathrm{N}-1$. Consider the alternate definition for DisjointSets below, where items can have any arbitrary integer value, and items can be added at any time.
public interface DisjointSetsSp19F \{
public void add(int p); // creates a new, disconnected item
public Set<Integer> vertices();
public void connect(int p, int q);
public boolean isConnected(int p, int q);
\}
a) (38 points). Complete the implementation of QuickUnionDisjointSets below, not including isConnected. For full credit, your implementation must be of QuickUnion, not QuickFind! That is, asymptotic runtimes of all methods should be at least as good as in unweighted QuickUnion.
public class QuickUnionSp19F implements DisjointSetsSp19F \{

```
    // ^^^ note you may have ONLY ONE INSTANCE VARIABLE! ^^^^
public QuickUnionSp19F() {
}
public void add(int p) { // throws exception if p already exists
    if (vertexExists(p)) { throw new IllegalArgumentException(); }
}
private boolean vertexExists(int p) { // true if p has been added
}
public Set<Integer> vertices() {
}
public void connect(int p, int q) {
    if (!vertexExists(p) || !vertexExists(q)) {throw new IllegalArgumentException();}
    int pRoot = root(p);
    int qRoot = root(q);
}
private int root(int p) {
    if (!vertexExists(p)) { throw new IllegalArgumentException(); }
```

\qquad
\qquad
\qquad
\qquad
\qquad

```
}
public boolean isConnected(int p, int q) { // implementation not shown }
}
```

b) (46 points). Suppose we create a class called ConnectedComponentIter that lets us iterate over all items connected to a given item. For example, the code below would print out the numbers 30, 50, 60, and 80, not necessarily in that order.

```
public static void main(String[] args) {
    DisjointSetsSp19F ds = new QuickUnionSp19F();
    for (int i = 0; i < 100; i += 1) {
        ds.add(i * 10);
    }
    ds.connect(50, 30); ds.connect(50, 60);
    ds.connect(60, 80); ds.connect(10, 20);
    ConnectedComponentIter cci = new ConnectedComponentIter(ds, 50);
    for (int i : cci) {
        System.out.println(i);
    }
}
```

Fill in the ConnectedComponentIter class so that it behaves as expected on all possible inputs, including the example above. There is no runtime requirement. Your code should work on any DisjointSetsSp19F implementation, not just a QuickUnionSp19F.
public class ConnectedComponentIter implements \qquad $<$ \qquad > \{
public ConnectedComponentIter(DisjointSetsSp19F ds, int p) \{
\qquad
\qquad
\qquad
\qquad
\qquad
\}
public Iterator< \qquad > iterator() \{

$$
\}
$$

\}
8. (68 points). Asymptotics. Give the worst case runtime of the following functions in Θ notation in terms of N .
\qquad

```
) public int f1(int N) {
    if (N<= 1) { return N; }
    int sum = 0;
    sum += f1(N/2);
    for (int i = 0; i < N/2; i += 1) {
        System.out.println("Bohlen");
    }
    sum += f1(N/3);
    for (int i = 0; i < N/2; i += 1) {
        System.out.println("Pierce");
    }
    sum += f1(N/6);
    return sum;
}
\Theta(___) public void f2(ArrayList<String> A, String s) {
    int N = A.length();
    int sLocation = A.indexOf(s); // returns -1 if not in A
    if (sLocation > -1) {
            String temp = A.get(0);
            A.get(0) = A.get(sLocation);
            A.set(sLocation, temp);
        }
} // Note: ArrayLists are similar to our AList class,
// They have one instance variable: An array.
```

For f 3 below, do not assume anything about the distribution of items in the hash table! Assume buckets are stored as linked lists of items. Assume that keySet creation is $\mathrm{O}(\mathrm{N})$, and that next () and hasNext () are constant time. Assume that a TreeSet is implemented using an LLRB.
\qquad

```
) public int f3(TreeSet<Bloop> A, HashSet<Bloop> B) {
    int N = a.size() + b.size();
    int inBoth = 0;
    for (Bloop a : A.keySet()) {
        if (B.containsKey(a)) {
            inBoth += 1;
        }
    }
    return inBoth;
}
```

```
\Theta(___)
) public void f4(int N) {
    int M = 0;
    for (int i = 1; i < N; i *= 2) {
        M += 1;
    }
    f4helper(M);
}
public void f4helper(int Q) {
    if (Q <= 0) { return; }
    for (int i = 0; i < Q; i += 1) {
        System.out.println(i);
    }
    f4helper(Q - 1);
}
```


9. Reductions and Sorting.

a) A 61B student proposes a new algorithm "Graph Path Sort" for sorting an array of N unique integers. It works by reducing sorting to the Directed Acyclic Graphs Shortest Paths Tree (DAGSPT) algorithm. Recall that DAGSPT first computes a topological sort, then visits vertices in topological order.

Specifically, in this algorithm, the student creates a graph corresponding to the array as follows:

- Create a vertex for each number.
- For each pair of integers v and w, if $v<w$, create a directed edge from v to w with weight 1 .

The student then uses the DAGSPT algorithm with the smallest number as the source. The sorted array is simply the path returned by the DAGSPT from the smallest number to the largest.
i) ($\mathbf{1 4}$ points). What is the overall runtime of Graph Path Sort in terms of N?
$\Theta($ \qquad)
ii. (16 points). Unfortunately, the student's algorithm is broken. Give the output of the student algorithm when run on the input [5, 1, 7, 9, 3].
iii. (28 points). Describe a simple fix to the student's algorithm that would make it work correctly on all arrays of unique integers. Your answer will be graded on correctness and conciseness.
10. A New Way. The hash table we described in class computes bucket numbers for an object x as follows: First we compute h, the hash code of the object. We then reduce h by modding by the number of buckets M , yielding a bucket number b . That is, $\mathrm{b}=\mathrm{x}$. hashCode() $\bmod \mathrm{M}$.

Naturally, multiple items may have the same bucket number b, which we called a collision. In class we resolved collisions with a technique we called "separate chaining". That is, if multiple items have the same bucket number b , they are all stored in a linked list together.

One alternate approach to collision that we did not discuss in class is "linear probing". In this approach, we do not use linked lists. Instead, if bucket b is already used, we use bucket $(\mathrm{h}+1) \bmod \mathrm{M}$. If that bucket is already used, we use bucket $(\mathrm{h}+2) \bmod \mathrm{M}$. If that is also used, we try bucket $(\mathrm{h}+3) \bmod \mathrm{M}$, and so forth.
a) ($\mathbf{1 8}$ points). Suppose we add the integers $93,21,5,3,13,25,83$, where the hash code of a number is given by its least significant digit, i.e. $\mathbf{h}(\mathbf{9 3})=3$. Draw the contents of the hash table below, where $M=$ 8. The first one has been done for you. Represent null entries with the string null. Assume we start from an empty hash table, i.e. where all entries are initially null.

Index	0	1	2	3	4	5	6	7
Key				93				

b) (22 points). In a linear probing hash table, the contains(x) method works by calling look(b), where b is the bucket number of x. look (b) is defined in pseudocode as follows:

- if bucket[b] == null, return false
- if bucket[b].equals(x), return true
- return $\operatorname{look}(b+1)$

Note that this procedure results in an infinite loop if the hash table is full and we call contains on an item that is not in the hash table. Thus, our linear probing hash table is never allowed to be totally full. In other words, its load factor is always less than 1.

Provide an ordered sequence of 4 add operations such that contains (0) requires two calls to equals and contains (1) requires three calls to equals. Assume we start from an empty hash table, $\mathrm{M}=8$ and we have the same hash code function as in part a.

c) ($\mathbf{2 2}$ points). We have not described how deletion in a linear probing hash table would work, so here's your chance to figure it out. Suppose we delete 5 from the linear probing hash table from part a. Draw the contents of the hash table below after deletion has been completed. Your answer must be such that future calls to add, contains, and delete will also be correct. You cannot get points for this if your answer to part a was wrong. Represent null entries with the string null.

Index	0	1	2	3	4	5	6	7
Key				93				

d) ($\mathbf{1 1}$ points). Give the best and worst case runtimes for the deletion method in theta notation in terms of N , the number of items, and M the number of buckets.

Best: $\Theta($ \qquad), Worst: $\Theta($ \qquad
11. Tcle. First, some terminology: A simple cycle is a path where no vertex is used more than once, other than the first and last vertex. For example, in the graph shown $\mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{A} \rightarrow \mathrm{B}$ would be a simple cycle, but $\mathrm{B} \rightarrow \mathrm{Y} \rightarrow \mathrm{Z} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{B}$ would not.

Given a weighted directed graph G, suppose we want to find WSSPsiCC (G, Ψ), the weight of the shortest simple "psi compliant" cycle in G.

We say that a cycle is "psi compliant" if it includes at most one vertex from a set of vertices Ψ.

We say that a cycle is the "shortest psi compliant" cycle if it has the minimum total weight among all psi-compliant cycles.

a) (14 points). Give the WSSPsiCC(G, Ψ) for the graph shown if $\Psi=\{\mathrm{A}, \mathrm{B}, \mathrm{X}\}$. That is, the cycle represented by your answer may include A, may include B, may include X, or may not include any of them. However, it cannot include both A and B, both A and X, or both B and X. It also cannot include all three. Your answer should be a single integer.
$\operatorname{WSSPsiCC}(\mathrm{G}, \Psi=\{\mathrm{A}, \mathrm{B}, \mathrm{X}\})=$ \qquad
b) (14 points). Give the $\operatorname{WSSPsiCC}(\mathrm{G}, \Psi)$ for the graph shown if $\Psi=\{\mathrm{X}, \mathrm{Y}, \mathrm{Z}\}$.
$\operatorname{WSSPsiCC}(\mathrm{G}, \Psi=\{\mathrm{X}, \mathrm{Y}, \mathrm{Z}\})=$ \qquad
c) (55 points). Give an algorithm for WSSPsiCC(G, Ψ) that runs in $\mathrm{O}(\mathrm{P} V \mathrm{E} \log \mathrm{V})$ time where P is the number of vertices in Ψ, E is the number of edges in the graph, and V is the number of vertices in the graph. For example, in the subproblems above (part a and b), $\mathrm{V}=6, \mathrm{E}=12, \mathrm{P}=3$.
12. Tree Representation 4. When studying heaps, we saw that a complete tree can be very simply represented by a sequence of values corresponding to the level order of the tree, which we called representation 3. For example 1, 2, 3, 4, 5 represents the tree below. Since we know the tree is complete, there is no ambiguity about where the items go.

This idea can also work for trees that are not complete. For example, we can also represent trees where every node has either 0 or 2 children in a similar manner. We will call this tree representation 4 . In this approach, we again represent the tree by its level order traversal, but also precede each item with a boolean, indicating whether it is a leaf or not. E.g., the tree above would be F, 1, F, 2, T, 3, T, 4, T, 5.
a) ($\mathbf{1 2}$ points). For the tree to the right, give tree representation 4.

b) ($\mathbf{1 2}$ points). For the sequence $F, 6, T, 3, F, 4, T, 7, T, 8$ draw the corresponding tree below.
c) ($\mathbf{1 8}$ points). For a tree representation 4 sequence that is 18 items long (9 numbers, 9 booleans), what is the minimum and maximum number of possible True values?

Minimum: \qquad Maximum: \qquad
d) ($\mathbf{5 5}$ points). Suppose that we have a tree stored as a recursive data structure of Node objects (defined below). Fill in writeTree so that it writes the tree to a file in representation 4. Assume that all nodes have either zero or 2 non-null children. You may assume the tree is well formed (no loops or other errors).

To write to a file you'll use the provided Out object. out.println(boolean b) writes the given boolean to the file, and out. println(int i). You should not use any other methods from the Out class.

As with any problem on this exam, you are welcome to instantiate whatever data structures that you want from the reference sheet. You may not create any helper methods.

Note: This problem is pretty hard. If you're stuck, come back later!

```
public class Node {
    public Node left, right;
    public int item;
    public TreeNode(int i, Node l, Node r) {
            left = l; right = r; item = i;
                        }
    /** Writes this tree to the given file in representation 4. */
    public void writeTree(Out out) {
```

\qquad
\}

Reminder: for booleans a and $b, a \& \& b$ returns the result of a AND b
e) ($\mathbf{3 3}$ points). An older version of the exam also had you write the readTree method, assuming the in. readInt() method gets the next integer and in.readBoolean() gets the next boolean. It was a cool problem, and the solution one of us came up with was really elegant, shown below.

```
public static TreeNode readTree(In in) {
    boolean isLeaf = in.readBoolean();
    if (isLeaf) {
        return new TreeNode(in.readInt(), null, null);
    } else {
        return new TreeNode(in.readInt(), readTree(in), readTree(in));
    }
}
```

To test our solution, we wrote a big nice JUnit test that used writeTree from the previous page, and then read the tree back in using readTree above. The test passed and we were feeling good. Unfortunately, the code above is fatally flawed, and our test just happened to miss the bug. Your job in this problem is to recreate our broken test.

Specifically, draw a tree with 11 nodes with the following property: If you write this tree out to a file using writeTree, then read the file using the buggy readTree method above, you get back the correct tree. You do not need to have completed part d to do this problem. You should assume that writeTree correctly outputs the appropriate Representation 4 sequence for your tree.
... and just like that, you've earned your wolf shirt. It's over.

Thanks for being in 61B. Have a fruitful and cool future.

