Problem 1

Your construction company needs to purchase a new steamroller. You consider three major steamroller manufacturers. Considering a MARR of 12%, which manufacturer should you purchase from if you plan to use this roller for 8 years? Explain your reasoning.

	A	B	C
Initial Cost	$\$ 125,034$	$\$ 101,858$	$\$ 119,565$
Annual Revenue	$\$ 90,000$	$\$ 30,000$	$\$ 40,000$
Annual Maintenance	$\$ 10,000$	$\$ 15,000$	$\$ 20,000$
Salvage Value at $8 \mathbf{y r}$	$\$ 60,000$	$\$ 40,000$	$\$ 50,000$

Problem 2

An investment alternative is represented by the following cash flow:

Time $=$	Cash Flow
0	$-\$ 500$
1	$\$ 0$
2	$+\$ 1,649$
3	$-\$ 700$
4	$-\$ 500$

Analyze the IRR of this cash-flow and provide a recommendation if the MARR is:
(a) 12%
(b) 15%
(c) 20%

Problem 3

(a) With the help of a graph, explain how the level of influence and the cumulative cost of a project vary over the project life-cycle.
(b) Explain the difference between Design-Build and Design-Bid-Build project delivery methods using the level of influence concept.

Problem 4

You deposit money once into a savings account at time $=0$ that has a nominal interest rate of 12%.
(a) What is the effective interest rate of this savings account if compounded annually for 6 years?
(b) If this account is worth $\$ 858$ at the end of 5 years and the 12% nominal interest rate is compounded quarterly, how much money was initially deposited?

Problem 5

(a) What does BIM stand for?
(b) What are three major advantages of BIM to a contractor?
(c) What are three major advantages of BIM to an owner?

Problem 6

Explain the key differences between the Construction Management at risk and the professional Construction Management method of project delivery. Also draw their typical project organisation trees.

Name:

Problem 7

Consider the following property investments under a discount rate of 12% :

	A	B
Initial Cost (in \$)	60,000	70,000
Life	$4 y r s$	$8 y r s$
Salvage Value (in \$)	47,000	20,000
Annual Revenue (in \$)	20,000	18,000
Annual Cost (in \$)	10,000	8,000
Discount Rate	12%	12%

Which property would you recommend on the basis of the discounted payback method? Which one would you recommend on the basis of NPV?

Reference Equations

- $[\mathbf{F} / \mathbf{P}, \mathbf{i}, \mathbf{n}]=(1+i)^{n}$
- $[\mathbf{F} / \mathbf{A}, \mathbf{i}, \mathbf{n}]=\frac{(1+i)^{n}-1}{i}$
- $[\mathbf{P} / \mathbf{A}, \mathbf{i}, \mathbf{n}]=\frac{(1+i)^{n}-1}{i(1+i)^{n}}$
- $[\mathbf{A} / \mathbf{P}, \mathbf{i}, \mathbf{n}]=\frac{i(1+i)^{n}}{(1+i)^{n}-1}$
- $i_{\text {eff }}=\left(1+\frac{i_{\text {nominal }}}{p}\right)^{p}-1$, where $\mathrm{p}=$ number of compounding periods per year

n	Single Payment		Uniform Payment Series				Arithmetic Gradient		
	Compound Amount Factor Find F Given P F/P	Present Worth Factor Find P Given F P/F	Sinking Fund Factor Find A Given F A/F	Capital Recovery Factor Find A Given P A/P	Compound Amount Factor Find F Given A F/A	Present Worth Factor Find P Given A P/A	Gradient Uniform Series Find A Given \boldsymbol{G} A/G	Gradient Present Worth Find P Given \boldsymbol{G} P/G	n
1	1.120	. 8929	1.0000	1.1200	1.000	0.893	0	0	1
2	1.254	. 7972	. 4717	. 5917	2.120	1.690	0.472	0.797	2
3	1.405	. 7118	. 2963	. 4163	3.374	2.402	0.925	2.221	3
4	1.574	. 6355	. 2092	. 3292	4.779	3.037	1.359	4.127	4
5	1.762	. 5674	. 1574	. 2774	6.353	3.605	1.775	6.397	5
6	1.974	. 5066	. 1232	. 2432	8.115	4.111	2.172	8.930	6
7	2.211	. 4523	. 0991	. 2191	10.089	4.564	2.551	11.644	7
8	2.476	. 4039	. 0813	. 2013	12.300	4.968	2.913	14.471	8
9	2.773	. 3606	. 0677	. 1877	14.776	5.328	3.257	17.356	9
10	3.106	. 3220	. 0570	. 1770	17.549	5.650	3.585	20.254	10

15\%	Compound Interest Factors								15\%
	Single Payment		Uniform Payment Series				Arithmetic Gradient		
n	Compound Amount Factor Find F Given P F/P	Present Worth Factor Find P Given F P/F	Sinking Fund Factor Find A Given F A/F	Capital Recovery Factor Find A Given P A/P	Compound Amount Factor Find F Given A F/A	Present Worth Factor Find P Given A P / A	Gradient Uniform Series Find A Given \boldsymbol{G} A/G	Gradient Present Worth Find P Given \boldsymbol{G} P/G	n
1	1.150	. 8696	1.0000	1.1500	1.000	0.870	0	0	1
2	1.322	. 7561	. 4651	. 6151	2.150	1.626	0.465	0.756	2
3	1.521	. 6575	. 2880	. 4380	3.472	2.283	0.907	2.071	3
4	1.749	. 5718	. 2003	. 3503	4.993	2.855	1.326	3.786	4
5	2.011	. 4972	. 1483	. 2983	6.742	3.352	1.723	5.775	5
6	2.313	. 4323	. 1142	. 2642	8.754	3.784	2.097	7.937	6
7	2.660	. 3759	. 0904	. 2404	11.067	4.160	2.450	10.192	7
8	3.059	. 3269	. 0729	. 2229	13.727	4.487	2.781	12.481	8
9	3.518	. 2843	. 0596	. 2096	16.786	4.772	3.092	14.755	9
10	4.046	. 2472	. 0493	. 1993	20.304	5.019	3.383	16.979	10
20\%				Compoun	Interest Facto				20\%

	Single Payment		Uniform Payment Series				Arithmetic Gradient		
n	Compound Amount Factor Find F Given P F/P	Present Worth Factor Find P Given F P/F	Sinking Fund Factor Find A Given F A/F	Capital Recovery Factor Find A Given P A/P	Compound Amount Factor Find F Given A F/A	Present Worth Factor Find P Given A P/A	Gradient Uniform Series Find A Given \boldsymbol{G} A/G	Gradient Present Worth Find P Given \boldsymbol{G} P/G	n
1	1.200	. 8333	1.0000	1.2000	1.000	0.833	0	0	1
2	1.440	. 6944	. 4545	. 6545	2.200	1.528	0.455	0.694	2
3	1.728	. 5787	. 2747	. 4747	3.640	2.106	0.879	1.852	3
4	2.074	. 4823	. 1863	. 3863	5.368	2.589	1.274	3.299	4
5	2.488	. 4019	. 1344	. 3344	7.442	2.991	1.641	4.906	5
6	2.986	. 3349	. 1007	. 3007	9.930	3.326	1.979	6.581	6
7	3.583	. 2791	. 0774	. 2774	12.916	3.605	2.290	8.255	7
8	4.300	. 2326	. 0606	. 2606	16.499	3.837	2.576	9.883	8
9	5.160	. 1938	. 0481	. 2481	20.799	4.031	2.836	11.434	9
10	6.192	. 1615	. 0385	. 2385	25.959	4.192	3.074	12.887	10

Mid Term 1 Solutions Steamraller A

$$
\begin{aligned}
N P V_{A} & =-125,034+(90,000-10,000)[P / A, 12 \%, 8]+(60,000)[P / F, 12 \%, 8] \\
& =-125,034+(80,000 \times 4.968)+(60,000 \times 0.4039) \\
& =-125,034+397,440+24,234 \\
& =+\$ 296,640
\end{aligned}
$$

Steamraller B

\rightarrow Only

$$
\begin{aligned}
N P V_{B} & =-101,858+(30,000-15,000)[P / A, 12 \%, 8]+(40,000)[P / F, 12 \%, 8] \\
& =-101,858+(15,000 \times 4,968)+(40,000 \times 0.4039) \\
& =-101,858+74,520+16,156 \\
& =-\$ 11,182
\end{aligned}
$$

Steamraller C

$$
\begin{aligned}
N P V= & -500 \\
& +1649[P / F, i, 2] \\
& -700[P / F, i, 3] \\
& -500[P / F, i, 4]
\end{aligned}
$$

$$
\Rightarrow N P V=\frac{-500}{(1+i)^{\circ}}+\frac{1649}{(1+i)^{2}}-\frac{700}{(1+i)^{3}}-\frac{500}{(1+i)^{4}}
$$

@ $i=12 \%, N P V=-500.00$

$$
\begin{aligned}
& +1314.57 \\
& -498.25 \\
& -317.76 \\
& \hline-1.44
\end{aligned}
$$

@ $i=15 \%, N P V=-500.00$

$$
\begin{aligned}
& +1246.88 \\
& -460.26 \\
& -285.88 \\
& \hline+0.74
\end{aligned}
$$

$$
\begin{aligned}
@ i=20 \%, N P V & =-500.00 \\
& +1145.14 \\
& -405.09 \\
& -241.13 \\
& -1.08
\end{aligned}
$$

From figure 2, we get

$$
I R R_{1} \approx 14 \% \& I R R_{2} \approx 17 \%
$$

(a) If $M A R R=12 \%$,

$$
I R R_{1}, I R R_{2}>M A R R
$$

\therefore Investment is favorable
(b) If $M A R R=15 \%$,

Figure 1

Figure 2
$I R R_{1}<M A R R<I R R_{2}$
\therefore Cannot make a recommendation
(c) If $M A R R=20 \%$,

$$
I R R_{1}, I R R_{2}<M A R R
$$

\therefore Investment is not favorable

(a)

$$
\begin{aligned}
i_{e f f} & =\left(1+\frac{0.12}{1}\right)^{1}-1 \\
& =0.12 \text { OR } 12 \%
\end{aligned}
$$

(b)

$$
\begin{aligned}
& i=\frac{12 \%}{4}=3 \% \quad n=5 \text { years } \times 4 \text { quarters/year } \\
& =20 \\
& P=F\left[P / F, i_{i}^{35, n}\right] \\
& =\frac{858}{(1+0.03)^{20}} \\
& P=\$ 475.03
\end{aligned}
$$

$\frac{n-7}{22623}=\frac{8-n}{398} \rightarrow$ Choose option A; Option B does not break even $\therefore n=7.98$ years

$$
\begin{aligned}
N P V_{A}= & -60,000 \\
& +(20,000-10,000)[P / A, 12 \%, 8] \\
& -60,000[P / F, 12 \%, 4] \\
& +47,000[P / F, 12 \%, 4] \\
& +47,000[P / f, 12 \%, 8] \\
= & -60,000 \\
& +10,000(4.968) \\
& -60,000(0.6355) \\
& +47,000(0.6355) \\
& +47,000(0.4039) \\
= & +401.8
\end{aligned}
$$

$$
\begin{aligned}
N P V_{B}= & -70,000 \\
& +(18,000-8,000)[P / A, 12 \%, 8] \\
& +20,000[P / F, 12 \%, 8] \\
= & -70,000 \\
& +10,000(4,968) \\
& +20,000(0.4039) \\
= & -12,242
\end{aligned}
$$

$$
\begin{aligned}
& N P V_{A}>N P V_{B} \\
\rightarrow & \text { choose option } A
\end{aligned}
$$

