Midterm

NAME:

SID:

Instruction:

1. The exam lasts 1 h 20 .
2. The maximum score is 30 .
3. Notes are not allowed, except for a one-page, two sided cheat sheet.
4. Do not open the exam until you are told to do so.
5. DO NOT WRITE ON THE BACK OF THE EXAM PAGES.

The breakdown of points is as follows.

Part	a	b	c	d	e	f	total
1	1	1	1	1			4
2	2	1	1	1	1	2	8
3	1	1	1	3	2	4	12
4	2	4	0	0	0	0	6

1.

Linear functions of images. In this problem we consider linear functions of an image with 2×2 pixels shown below.

3	7
8	5

This given image can be represented as the 4 -vector $\left[\begin{array}{l}3 \\ 7 \\ 8 \\ 5\end{array}\right]$.
Each of the operations described below defines a linear transformation $y=f(x)$, where the 4 -vector x represents the original image, and the 4 -vector y represents the resulting or transformed image. For each of these operations, provide the 4×4 matrix A for which $y=A x$. Also in each case, determine the rank of the matrix A.
(a) Reflect the original image x across the vertical (i.e. bottom-to-top) axis.
(b) Rotate the original image x clockwise 90°.
(c) Rotate the original image x clockwise by 180°.
(d) Set each pixel value y_{i} to be the average of the neighbors of pixel i in the original image. We define neighbors, to be the pixels immediately above and below and to the left and right. For the 2×2 matrix, every pixel has 2 neighbors.
2.

Fun with the $S V D$. Consider the 4×3 matrix

$$
A=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \tag{1}
\end{array}\right]
$$

where a_{i} for $i \in\{1,2,3\}$ form a set of orthogonal vectors satisfying $\left\|a_{1}\right\|_{2}=3,\left\|a_{2}\right\|_{2}=$ $2,\left\|a_{3}\right\|_{2}=1$.
(a) What is the SVD of A ? Express it as $A=U S V^{\top}$, with S the diagonal matrix of singular values ordered in decreasing fashion, and explicitly describe U and V.
(b) Write A as a sum of 3 rank-one matrices.
(c) What is the dimension of the null space, $\operatorname{dim}(\operatorname{null}(A))$?
(d) What is the rank of $A, \operatorname{rank}(A)$? Provide an orthonormal basis for the range of A.
(e) Find the maximum "gain" of A (the amount that A can "expand" an input vectors ℓ_{2} norm). More formally, what is the value of $\max _{x:\|x\|_{2}=1} \frac{\|A x\|_{2}}{\|x\|_{2}}$?
(f) If I_{3} denotes the 3×3 identity matrix, consider the matrix $\tilde{A}=\left[\begin{array}{c}A \\ I_{3}\end{array}\right] \in \mathbb{R}^{7 \times 3}$? What are the singular values of \tilde{A} (in terms of the singular values of A)?
3.

Regression and Applications. We first consider the regularized least-squares problem,

$$
\begin{equation*}
w_{\lambda}:=\arg \min _{w}\|y-X w\|_{2}^{2}+\lambda\|w\|_{2}^{2} \tag{2}
\end{equation*}
$$

and subsequently an application to modeling time series. To begin, we investigate several fundamental properties of regression. Here, $X \in \mathbb{R}^{n, p}$ is the data matrix (with one data point per row), $y \in \mathbb{R}^{n}$ is the response vector, and $\lambda>0$ is a "ridge" regularization parameter.
(a) Assume, only for this part, that $n<p$. Is $X^{\top} X$ invertible? Explain your reasoning.
(b) Now assume no relation between n and p. Is $X^{\top} X+\lambda I$ invertible? Explain your reasoning.
(c) Show that the solution to the full problem can be written as

$$
\begin{equation*}
w_{\lambda}=\left(X^{\top} X+\lambda I\right)^{-1} X^{\top} y \tag{3}
\end{equation*}
$$

(d) Now suppose we would like find w that minimizes,

$$
\begin{equation*}
w=\arg \min _{w}\left\{\sum_{i=1}^{k} \lambda_{i}\left\|y_{i}-X_{i} w\right\|_{2}^{2}\right\} \tag{4}
\end{equation*}
$$

(so it jointly fits k different linear regression objectives). Explain how to reformulate this problem as a single least-squares problem with augmented \tilde{X} and \tilde{y} in an objective $\|\tilde{y}-\tilde{X} w\|_{2}^{2}$, and find the solution w to the aforementioned problem ${ }^{1}$.
(e) What is the computational complexity (in big- O notation) of computing the solution the previous question in terms of n, p, k ? Assume each $X_{i} \in \mathbb{R}^{n \times p}$ and $y_{i} \in \mathbb{R}^{n}$ and once again that the relevant square matrices are invertible.

[^0]SID:

Periodic Time Series. We now consider an application to the problem of modeling a periodic time series z_{t} which we approximate by a sum of K sinusoids:

$$
\begin{equation*}
z_{t} \approx \hat{z}_{t}=\sum_{k=1}^{K} a_{k} \cos \left(\omega_{k} t-\phi_{k}\right) \quad t=1,2, \ldots, T \tag{5}
\end{equation*}
$$

The coefficient $a_{k} \geq 0$ are the amplitudes, ω_{k} the frequencies, and ϕ_{k} the phases. In many applications (and the one we consider) the frequencies ω_{k} are apriori known and fixed. We wish to find a_{1}, \ldots, a_{K} and $\phi_{1}, \ldots, \phi_{K}$ to ensure the means-squared value of the approximation error $\left(\hat{z}_{1}-z_{1}, \ldots, \hat{z}_{T}-z_{t}\right)$ is small.
(f) Explain how to solve the aforementioned problem using (regularized) least squares to estimate a_{1}, \ldots, a_{K} and $\phi_{1}, \ldots, \phi_{K}$. Be explicit in the mappings between the values $z_{t}, a_{k}, \omega_{k}, \phi_{k}$ in the original formulation and the standard regression parametrization y, X, w_{λ} (detailed in the beginning of the question), and the dimensions of the relevant vectors/matrices. Hint: Recall the identity a $\cos (\omega t-\phi)=$ $\alpha \cos (\omega t)+\beta \sin (\omega t)$ for $\alpha=a \cos \phi$ and $\beta=a \sin \phi$, with $a=\sqrt{\alpha^{2}+\beta^{2}}$ and $\phi=\arctan (\beta / \alpha)$.
4.

Positive-Definite Matrices and Hessians.
Let $C \in \mathbb{R}^{n \times n}$ by a real, symmetric positive-definite matrix. Consider the function

$$
f_{\lambda}(x)=\left\|C-x x^{\top}\right\|_{F}^{2}+2 \lambda\|x\|_{2}^{2}
$$

where $x \in \mathbb{R}^{n}$.
(a) Compute the Hessian matrix of the function $f_{\lambda}(x)$ with respect to $x, \nabla^{2} f_{\lambda}(x)$. Hint: Note that $\left\|C-x x^{\top}\right\|_{F}^{2}=\|C\|_{F}^{2}+\|x\|_{2}^{4}-2 x^{\top} C x$.
(b) When is the Hessian matrix (which depends on x), positive semi-definite at all points x ? You should derive an "if and only if" condition expressed in terms of λ and a function of the matrix C.

[^0]: ${ }^{1}$ you may assume the relevant square matrices are invertible.

