Midterm: Solutions

1. Linear functions of images. In this problem we consider linear functions of an image with 2×2 pixels shown below.

3	7
8	5

This given image can be represented as the 4 -vector $\left[\begin{array}{l}3 \\ 7 \\ 8 \\ 5\end{array}\right]$.
Each of the operations described below defines a linear transformation $y=f(x)$, where the 4 -vector x represents the original image, and the 4 -vector y represents the resulting or transformed image. For each of these operations, provide the 4×4 matrix A for which $y=A x$. Also in each case, determine the rank of the matrix A.
(a) Reflect the original image x across the vertical (i.e. bottom-to-top) axis.
(b) Rotate the original image x clockwise 90°.
(c) Rotate the original image x clockwise by 180°.
(d) Set each pixel value y_{i} to be the average of the neighbors of pixel i in the original image. We define neighbors, to be the pixels immediately above and below and to the left and right. For the 2×2 matrix, every pixel has 2 neighbors.

Solution:

(a) For $y=A x$, we have the reflection (across the vertical axis) matrix A :

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
3 \\
7 \\
8 \\
5
\end{array}\right]=\left[\begin{array}{l}
7 \\
3 \\
5 \\
8
\end{array}\right]
$$

Where y is the flipped image x. Here $\operatorname{rank}(A)=4$ since all the columns are linearly independent.
(b) For $y=A x$, we have the 90° rotation matrix A :

$$
\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
3 \\
7 \\
8 \\
5
\end{array}\right]=\left[\begin{array}{l}
8 \\
3 \\
5 \\
7
\end{array}\right]
$$

Where y is the rotated image x. Here $\operatorname{rank}(A)=4$ since all the columns are linearly independent.
(c) For $y=A x$, we have the 180° rotation A :

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
3 \\
7 \\
8 \\
5
\end{array}\right]=\left[\begin{array}{l}
5 \\
8 \\
7 \\
3
\end{array}\right]
$$

Where y is the rotated image x. Here $\operatorname{rank}(A)=4$ since all the columns are linearly independent.
(d) For $y=A x$, we have the matrix A :

$$
\left[\begin{array}{cccc}
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{2} \\
\frac{1}{2} & 0 & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2} & 0
\end{array}\right]\left[\begin{array}{l}
3 \\
7 \\
8 \\
5
\end{array}\right]=\left[\begin{array}{c}
7.5 \\
4 \\
4 \\
7.5
\end{array}\right]
$$

Where y_{i} is the average of the neighbors of pixel i. Here $\operatorname{rank}(A)=2$ since there are only 2 columns that are linearly independent.
2. Fun with the $S V D$. Consider the 4×3 matrix

$$
A=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \tag{1}
\end{array}\right]
$$

where a_{i} for $i \in\{1,2,3\}$ form a set of orthogonal vectors satisfying $\left\|a_{1}\right\|_{2}=3,\left\|a_{2}\right\|_{2}=$ $2,\left\|a_{3}\right\|_{2}=1$.
(a) What is the SVD of A ? Express it as $A=U S V^{\top}$, with S the diagonal matrix of singular values ordered in decreasing fashion, and explicitly describe U and V.
(b) Write A as a sum of 3 rank-one matrices.
(c) What is the dimension of the null space, $\operatorname{dim}(\operatorname{null}(A))$?
(d) What is the rank of $A, \operatorname{rank}(A)$? Provide an orthonormal basis for the range of A.
(e) Find the maximum "gain" of A (the amount that A can "expand" an input vectors ℓ_{2} norm). More formally, what is the value of $\max _{x:\|x\|_{2}=1} \frac{\|A x\|_{2}}{\|x\|_{2}}$?
(f) If I_{3} denotes the 3×3 identity matrix, consider the matrix $\tilde{A}=\left[\begin{array}{c}A \\ I_{3}\end{array}\right] \in \mathbb{R}^{7 \times 3}$? What are the singular values of \tilde{A} (in terms of the singular values of A)?

Solution:

(a) The SVD of $A=U S V^{\top}$. Due to the orthogonality of the a_{i} we have that

$$
A^{\top} A=V S^{2} V=\left[\begin{array}{lll}
9 & 0 & 0 \tag{2}\\
0 & 4 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Thus $V=I$ and $S=\operatorname{diag}(3,2,1)$. Finally we have that $U=A S^{-1}$ which becomes

$$
A=\left[\begin{array}{lll}
\frac{a_{1}}{3} & \frac{a_{2}}{2} & \frac{a_{3}}{1} \tag{3}
\end{array}\right]
$$

(b) If we let e_{i} denote the standard basis vectors in \mathbb{R}^{3} then we immediately obtain that

$$
\begin{equation*}
A=a_{1} e_{1}^{\top}+a_{2} e_{2}^{\top}+a_{3} e_{3}^{\top} . \tag{4}
\end{equation*}
$$

Expanding out the SVD of the matrix is also a valid answer.
(c) From part (a) all of the singular values of the A are non-zero. So the dimension of the null space is 0 . Alternatively, all the columns of A are orthogonal - so no (non-zero) linear combination of them can equal zero.
(d) The rank of A is simply the number of non-zero singular values. So $\operatorname{rank}(A)=3$. The columns of U (defined above) provide an orthonormal basis for the range of A.
(e) As defined the maximum "gain" of A (also knowns as it spectral norm) is simply given by its largest singular value. Hence the maximum "gain" of A is 3 .
(f) We have that $\tilde{A}^{\top} \tilde{A}=A^{\top} A+I_{3}=V\left(S^{2}+I_{3}\right) V^{\top}$. Hence if we denote σ_{i} as the singular values of A then the singular values of \tilde{A} are $\tilde{\sigma}_{i}=\sqrt{\sigma_{i}^{2}+1}$ which are $\sqrt{10}, \sqrt{5}, \sqrt{2}$.
It's fine if they write either the algebraic expression or the explicit values for this question.
3. Regression and Applications. We first consider the regularized least-squares problem,

$$
\begin{equation*}
w_{\lambda}:=\arg \min _{w}\|y-X w\|_{2}^{2}+\lambda\|w\|_{2}^{2}, \tag{5}
\end{equation*}
$$

and subsequently an application to modeling time series. To begin, we investigate several fundamental properties of regression. Here, $X \in \mathbb{R}^{n, p}$ is the data matrix (with one data point per row), $y \in \mathbb{R}^{n}$ is the response vector, and $\lambda>0$ is a "ridge" regularization parameter.
(a) Assume, only for this part, that $n<p$. Is $X^{\top} X$ invertible? Explain your reasoning.
(b) Now assume no relation between n and p. Is $X^{\top} X+\lambda I$ invertible? Explain your reasoning.
(c) Show that the solution to the full problem can be written as

$$
\begin{equation*}
w_{\lambda}=\left(X^{\top} X+\lambda I\right)^{-1} X^{\top} y \tag{6}
\end{equation*}
$$

(d) Now suppose we would like find w that minimizes,

$$
\begin{equation*}
w=\arg \min _{w}\left\{\sum_{i=1}^{k} \lambda_{i}\left\|y_{i}-X_{i} w\right\|_{2}^{2}\right\} \tag{7}
\end{equation*}
$$

(so it jointly fits k different linear regression objectives). Explain how to reformulate this problem as a single least-squares problem with augmented \tilde{X} and \tilde{y} in an objective $\|\tilde{y}-\tilde{X} w\|_{2}^{2}$, and find the solution w to the aforementioned problem ${ }^{1}$.
(e) What is the computational complexity (in big- O notation) of computing the solution the previous question in terms of n, p, k ? Assume each $X_{i} \in \mathbb{R}^{n \times p}$ and $y_{i} \in \mathbb{R}^{n}$ and once again that the relevant square matrices are invertible.

[^0]SID:
Periodic Time Series. We now consider an application to the problem of modeling a periodic time series z_{t} which we approximate by a sum of K sinusoids:

$$
\begin{equation*}
z_{t} \approx \hat{z}_{t}=\sum_{k=1}^{K} a_{k} \cos \left(\omega_{k} t-\phi_{k}\right) \quad t=1,2, \ldots, T \tag{8}
\end{equation*}
$$

The coefficient $a_{k} \geq 0$ are the amplitudes, ω_{k} the frequencies, and ϕ_{k} the phases. In many applications (and the one we consider) the frequencies ω_{k} are apriori known and fixed. We wish to find a_{1}, \ldots, a_{K} and $\phi_{1}, \ldots, \phi_{K}$ to ensure the means-squared value of the approximation error $\left(\hat{z}_{1}-z_{1}, \ldots, \hat{z}_{T}-z_{t}\right)$ is small.
(f) Explain how to solve the aforementioned problem using (regularized) least squares to estimate a_{1}, \ldots, a_{K} and $\phi_{1}, \ldots, \phi_{K}$. Be explicit in the mappings between the values $z_{t}, a_{k}, \omega_{k}, \phi_{k}$ in the original formulation and the standard regression parametrization y, X, w_{λ} (detailed in the beginning of the question), and the dimensions of the relevant vectors/matrices. Hint: Recall the identity a $\cos (\omega t-\phi)=$ $\alpha \cos (\omega t)+\beta \sin (\omega t)$ for $\alpha=a \cos \phi$ and $\beta=a \sin \phi$, with $a=\sqrt{\alpha^{2}+\beta^{2}}$ and $\phi=\arctan (\beta / \alpha)$.

Solution:

(a) Since $n<p$ we have that $X^{\top} X \in \mathbb{R}^{p \times p}$ has rank at most n and hence cannot be invertible (although it is positive-semi-definite).
(b) $X^{\top} X+\lambda I$ is always invertible. We can see this by using the SVD of X which gives that $X^{\top} X+\lambda I=V(S+\lambda I) V^{\top}$. Since $S \succeq 0$ (because $X^{\top} X$ is positive semi-definite) the minimum eigenvalue of $X^{\top} X+\lambda I$ is bounded below by $\lambda>0$, so the matrix must be invertible.
(c) We can rewrite the ridge regression objective as an augmented least-squares problem as $\min _{w}\|\tilde{y}-\tilde{X} w\|_{2}^{2}$ with $\tilde{X}=\left[\begin{array}{c}X \\ \sqrt{\lambda} I_{p}\end{array}\right]$ and $\tilde{y}=\left[\begin{array}{l}y \\ 0\end{array}\right]$. Writing down and expanding the normal equations $w_{\lambda}=\left(\tilde{X}^{\top} \tilde{X}\right)^{-1} \tilde{X}^{\top} \tilde{y}=\left(X^{\top} X+\lambda I\right)^{-1} X^{\top} y$.

Alternatively, The first-order stationary conditions give that

$$
X^{\top}\left(X^{\top} w_{\lambda}-y\right)+\lambda w_{\lambda}=0 \Longrightarrow\left(X^{\top} X+\lambda I\right) w_{\lambda}=X^{\top} y \Longrightarrow w_{\lambda}=\left(X^{\top} X+\lambda I\right)^{-1} X^{\top} y
$$

(d) We can define $\tilde{X}=\left[\begin{array}{c}\sqrt{\lambda_{1}} X_{1} \\ \vdots \\ \sqrt{\lambda_{k}} X_{k}\end{array}\right]$ and $\tilde{y}=\left[\begin{array}{c}\sqrt{\lambda_{1}} y_{1} \\ \vdots \\ \sqrt{\lambda_{k}} y_{k}\end{array}\right]$ for which $\min _{w}\|\tilde{y}-\tilde{X} w\|_{2}^{2}$ will have the same solution.
We can expand out the solution from the single least-squares problem (from the normal equations) as,

$$
\begin{equation*}
w=\left(\sum_{i=1}^{k} \lambda_{i} X_{i}^{\top} X\right)^{-1}\left(\sum_{i=1}^{k} \lambda_{i} X_{i}^{\top} y_{i}\right) \tag{9}
\end{equation*}
$$

(It's fine if students did not explicitly write the expansion if their reformulation was correct and they wrote the solution to a single least-squares problem).
(e) The dominant computational cost is computing the matrix inverse. First computing $\sum_{i=1}^{k} \lambda_{i} X_{i}^{\top} X$ takes $O\left(k n p^{2}\right)$ time. Inverting it takes an additional $O\left(p^{3}\right)$ time.
(f) Using the identity we have that,

$$
\begin{equation*}
z_{t} \approx \sum_{k=1}^{K} a_{k} \cos \left(\omega_{k} t-\phi_{k}\right)=\sum_{k=1}^{K} \alpha_{k} \cos \left(\omega_{k} t\right)+\beta_{k} \sin \left(\omega_{k} t\right) \tag{10}
\end{equation*}
$$

We can formulate as a linear regression where $y \in \mathbb{R}^{T}$ is the concatenated vector of z_{t} 's, the t th row of X (the analogue of datapoint) is the row vector of $\left(\cos \left(\omega_{k} t\right), \sin \left(\omega_{k} t\right)\right) \in \mathbb{R}^{2 K}$, and the concatenated vector of $\left(\alpha_{k}, \beta_{k}\right)$ corresponds to $w_{\lambda} \in \mathbb{R}^{2 K}$. More explicitly, we can map the sinusoid data into the regression parametrization as

$$
y=\left[\begin{array}{c}
z_{1} \tag{11}\\
\vdots \\
z_{T}
\end{array}\right]
$$

and that,

$$
X=\left[\begin{array}{cccccc}
\cos \left(\omega_{1} \cdot 1\right) & \ldots & \cos \left(\omega_{k} 1\right) & \sin \left(\omega_{1} \cdot 1\right) & \ldots & \sin \left(\omega_{k} 1\right) \tag{12}\\
\vdots & \ddots & & & & \\
\cos \left(\omega_{1} \cdot T\right) & \ldots & \cos \left(\omega_{k} T\right) & \sin \left(\omega_{1} \cdot T\right) & \ldots & \sin \left(\omega_{k} T\right)
\end{array}\right]
$$

with

$$
w_{\lambda}=\left[\begin{array}{c}
\alpha_{1} \tag{13}\\
\vdots \\
\alpha_{k} \\
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right],
$$

corresponding to the solution of the regression.
From this estimate of w_{λ} we can recover estimates of a_{k} and ϕ_{k} using the identities $a=\sqrt{a^{2}+b^{2}}$ and $\phi=\arctan (\beta / \alpha)$. Explicitly, we will estimate,

$$
\begin{equation*}
a_{k}=\sqrt{\left.\left(w_{\lambda}\right)_{k}^{2}+\left(w_{\lambda}\right)_{k+K}\right)^{2}} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{k}=\arctan \left[\frac{\left(w_{\lambda}\right)_{k+K}}{\left(w_{\lambda}\right)_{k}}\right] \tag{15}
\end{equation*}
$$

(It's fine if students did not explicitly write down this last mapping if their previous formulation was correct and they explained how to recover a_{k}, ϕ_{k} from the regression).
Note the ordering of the features in the matrix X and w_{λ} we have chosen here is not essential - other orderings are equally valid.
4. Positive-Definite Matrices and Hessians.

Let $C \in \mathbb{R}^{n \times n}$ by a real, symmetric positive-definite matrix. Consider the function

$$
f_{\lambda}(x)=\left\|C-x x^{\top}\right\|_{F}^{2}+2 \lambda\|x\|_{2}^{2}
$$

where $x \in \mathbb{R}^{n}$.
(a) Compute the Hessian matrix of the function $f_{\lambda}(x)$ with respect to $x, \nabla^{2} f_{\lambda}(x)$. Hint: Note that $\left\|C-x x^{\top}\right\|_{F}^{2}=\|C\|_{F}^{2}+\|x\|_{2}^{4}-2 x^{\top} C x$.
(b) When is the Hessian matrix (which depends on x), positive semi-definite at all points x ? You should derive an "if and only if" condition expressed in terms of λ and a function of the matrix C.

Solution:

(a) We can express the function as $f_{\lambda}(x)=\left(\|x\|_{2}^{2}+\lambda\right)^{2}-2 x^{\top} C x+\|C\|_{F}^{2}-\lambda^{2}$. The gradient and Hessian of $f_{\lambda}(x)$ at a point $x \in \mathbb{R}^{n}$ are

$$
\frac{1}{4} \nabla f_{\lambda}(x)=\left(\|x\|_{2}^{2}+\lambda\right) x-C x, \quad \frac{1}{4} \nabla^{2} f_{\lambda}(x)=\left(\|x\|_{2}^{2}+\lambda\right) I_{n}+2 x x^{\top}-C .
$$

(b) The Hessian is PSD everywhere if and only if

$$
\forall x, v,\|v\|_{2}=1:\|x\|_{2}^{2}+\lambda \geq v^{\top}\left(C-2 x x^{\top}\right) v
$$

The above is equivalent to

$$
\begin{aligned}
\lambda & \geq \max _{x, v:\|v\|_{2}=1} v^{\top} C v-2\left(v^{\top} x\right)^{2}-x^{\top} x \\
& =\max _{v:\|v\|_{2}=1} v^{\top} C v-\min _{x}\left(x^{\top} x+2\left(v^{\top} x\right)^{2}\right) \\
& =\lambda_{\max }(C) .
\end{aligned}
$$

since $\min _{x}\left(x^{\top} x+2\left(v^{\top} x\right)^{2}\right)=0$.

[^0]: ${ }^{1}$ you may assume the relevant square matrices are invertible.

