
Lecture 2 & 3  Midterm 1 Solutions – Fall 2019 

Problem 1  

1) 

𝑉𝑟𝑚𝑠 = 𝑢1 = √
3𝐾𝐵𝑇1

𝑚1
       (3 points) 

𝑇1 =
𝑢1

2∗𝑚1

3𝐾𝐵
      (2 points) 

𝑉𝑟𝑚𝑠 = 𝑢2 = √
3𝐾𝐵𝑇2

𝑚2
                                     (3 points) 

𝑇2 =
𝑢2

2∗𝑚2

3𝐾𝐵
      (2 points) 

 

2) 

Since the system is isolated, Eint, inital = Eint, final (2 points) 

Eint,1 + Eint,2 = Eint, final 

(3/2)n1RT1 + (5/2)n2RT2 = (1/2)RT(3n1 +5n2)  (2 points) 

𝑇 =
3𝑛1𝑇1+5𝑛2𝑇2

3𝑛1+5𝑛2
     (2 points)     

𝑃 =
nRT

V
      (3 points) 

𝑃 =
(𝑛1+𝑛2)R

𝑉1+𝑉2
∗

3𝑛1𝑇1+5𝑛2𝑇2

3𝑛1+5𝑛2
    (1 points) 

 



Problem 2

2. (a) The total amount of heat transferred to the water will come from two contribu-

tions: (1) heating the mass mw of water to Tf = 100◦C and (2) converting the

mass ms of water to steam. The heat from (1) is calculated using the heat capacity

equation Qw,1 = mwcw∆T = mwcw(Tf − T0), and the heat from (2) is calculated

using latent heats as Qw,2 = msLv, where cw is the heat capacity of water and Lv

is the heat of vaporization of water. The total heat transferred by the water is

then the sum of these, Qw = Qw,1 + Qw,2 = mwcw(Tf − T0) + msLv.

(b) The bowl only absorbs heat in changing its temperature, so we use the heat capac-

ity to calculate that Qb = mbcb∆T = mbcu(Tf −T0), where cu is the heat capacity

of copper, the material out of which the bowl is made.

(c) We now have the total heat absorbed by the bowl/water system, Qb + Qw. By

conservation of energy, this must be equal to the heat lost by the cylinder. This

magnitude of this quantity is given by using the heat capacity equation again,

Qc = mccu(Th − Tf ), where Th is the original temperature of the cylinder and

again cu is the heat capacity of copper. We can then set Qb + Qw equal to Qc to

solve for Th:

Qc = Qb + Qw =⇒ mccu(Th − Tf ) = mwcw(Tf − T0) + msLv + mbcu(Tf − T0)

= (mwcw + mbcu)(Tf − T0) + msLv

=⇒ Th = Tf +
1

mccu
((mwcw + mbcu)(Tf − T0) + msLv) .

Note: Given the information we have, there are two assumptions we can make: (1)

not all of the water boils away (ms < mw) or (2) all of the water is converted to

steam (ms = mw). In the first case, which is assumed in the above solution, the final

temperature of the system must be Tf = 100◦C. On the one hand, since there is water

remaining in the bowl, the temperature must be no greater than 100◦C because the

temperature of water cannot exceed its boiling point. However, because we know that

some of the water is vaporized to steam, the temperature must also be at least 100◦C,



which leads to the conclusion that Tf = 100◦C. In the second case, Tf can be pretty

much any temperature that is at least 100◦C, in which case we would have to change

some things to our solution to account for the fact that the steam can absorb some heat

to change its temperature from 100◦C to Tf . However, it is safe to assume that case

one is the situation to which the question refers, since we are given a different variable

ms to refer to the mass of steam that appears during the process instead of explicitly

being told that all of the water is converted.

Rubric

a) i) Using the specific heat relation Q = mc∆T applied to the water (2 points)

ii) Correctly writing mwcw(Tf − T0) as this heat (1 point)

iii) Using the latent heat relation Q = mL (2 points)

iv) Correctly writing msLv as this heat (1 point)

v) Reaching the correct answer Qw = mwcw(Tf − T0) + msLv (1 points)

b) i) Using the specific heat relation Q = mc∆T applied to the bowl (2 points)

ii) Correctly writing mbcu(Tf − T0) as this heat (1 point)

iii) Reaching the correct answer Qb = mbcu(Tf − T0) (1 point)

c) i) Stating that Qc + Qb + Qw = 0 in some form (2 points)

ii) Having the correct sign on Qc (1 point)

iii) Using the specific heat relation Q = mc∆T applied to the cylinder (2 points)

iv) Correctly writing mccu(Th − Tf ) as the magnitude of this heat (1 point)

v) Solving correctly for Th using the solutions provided for (a) and (b) consistent

with the sign chosen for Qc (2 point)

vi) Reaching the correct final answer (1 point)



Problem 3

(a) (7 points):

(2 points) Use the ideal gas law to solve for P in terms of V :

PV = nRT → P =
RT0

V
(1)

since n = 1.

• 1 point for using the ideal gas law equation

• 1 point for correctly solving for P in terms of V and constants

(4 points) Set up the work integral:

W =

∫ V1

V0

PdV =

∫ V1

V0

RT0

V
dV (2)

• 1 point for getting the sign right (dW = +PdV )

• 1 point for putting the right limits of integration

• 2 points for the correct form of the integral (writing PdV in terms of V and constants

(1 point) Integrate!

W = RT0 ln

(
V1

V0

)
(3)

• 1 point for getting the right answer

(b) (8 points):

(2 points) Use the van der Waals equation ?? to solve for P in terms of V :

(P + a/V 2)(V − b) = RT → P =
RT0

V − b
− a

V 2
(4)



• 2 points for correctly solving for P in terms of V and constants

(4 points) Set up the work integral:

W =

∫ V1

V0

PdV =

∫ V1

V0

(
RT0

V − b
− a

V 2

)
dV (5)

• 1 point for getting the sign right (dW = +PdV )

• 1 point for putting the right limits of integration

• 2 points for the correct form of the integral (writing PdV in terms of V and constants

(2 point) Integrate!

W = RT0 ln

(
V1 − b

V0 − b

)
− a

(
V1 − V0

V1V0

)
(6)

• 2 point for getting the right answer

Problem 4

The maximum efficiency of an engine operating at Th and T0 is the carnot efficiency, e =

1− T0

Th
.

The efficiency of the combined engine is e = Wnet

Qh
= W1+W2

Qh

We have W1 = e1Qh = (1 − Tc

Th
)Qh. The heat input to the second engine is just Qc, the

heat expelled by the second engine, so W2 = (1− T0

Tc
)Qc = (1− T0

Tc
) Tc

Th
Qh. Thus,

e =
(1− Tc

Th
)Qh + (1− T0

Tc
) Tc

Th
Qh

Qh

= 1− Tc

Th

+ (1− T0

Tc

)
Tc

Th

= 1− T0

Th

,



which is the same as the efficiency of a carnot engine operating between Th and T0.

Note: An alternate solution is to directly use the formula for the efficiency of a combined

engine, derived in a problem in the 7B workbook,

e = e1 + e2 − e1e2.

Using e1 = 1− Tc

Th
and e2 = 1− T0

Tc
in this equation gives the same result as above.

Rubric

• Correctly states or derives the maximum efficiency of an engine between Th and T0,

1− T0

Th
or 1− Q0

Qh
. (5 points)

• States that the heat input to the second engine is equal to the heat output of the first

engine. (2 points)

• Correctly computes the net work done by the first engine. (5 points)

• Correctly computes the net work done by the second engine. (5 points)

• Sets up the total efficiency as e = W1+W2

Qh
(3 points)

• Correctly computes that e = 1− T0

Th
(or 1− Q0

Qh
). (5 points)

Alternate Method:

• Correctly states or derives the maximum efficiency of an engine between Th and T0,

1− T0

Th
or 1− Q0

Qh
. (5 points)

• Gives correct expressions for the the efficiency of the two engines or for the net work

done by the two engines (2 points)

• States that the efficiency of the combined engine is e = e1 + e2 − e1e2. (8 points)

• Uses e = e1 + e2 − e1e2 to correctly compute that e = 1− T0

Th
(10 points)



Figure 1: Second process - gas A undergoes a “simple” isothermal expansion.

Problem 5

First, we should think physically about what’s happening. In the first process, we have

something like a free expansion of two gasses into a container, and they mix together. This is

clearly irreversible - I have to add in a lot of extra effort to put the gases back to their initial

state. In the second process, the gas is always in contact with a reservoir at temperature T ,

so we have isothermal processes for each gas. To help understand what’s happening, I like

to draw out the transformation of one of the gases - let’s look at gas A, and note that gas B

will behave similarly.

From gas A’s perspective, the partition that lets it through, as well as gas B, may as well

not be there. Work done by gas A, heat added to gas A, and internal energy of gas A don’t

care about what happens to B, nor do they notice the partition that lets them through. In

other words, we can break this process up into what happens to A independently to what

happens to B, and add up at the end. The process occuring for A is shown in Figure 1.

We suspect immediately now that second process is reversible - since everything is occuring

in thermal equilibrium, I could imagine running the process backwards, and putting back in

exactly as much work as I got out when the gas expanded, to put A and B back in their

original places. We will see that this suspicion is indeed true later, although you were not

asked in this question to discuss this.



1. Beginning with gas A, we have an isothermal (so reversible) process. So

∆SA =

∫
dQrev

T
=

∫
dQisothermal

T
(7)

=
1

T

∫
dQ (T constant here) (8)

(9)

Now for an isothermal process, internal energy is unchanged because the temperature

is constant. So by the first law, dQ = dW = pdV , so

∆SA =
1

T

∫ VA+VB

VA

pdV (10)

=
1

T

∫ VA+VB

VA

nART

V
dV (Ideal gas law) (11)

=
1

T
nART ln

(
VA + VB

VA

)
(12)

=nAR ln

(
VA + VB

VA

)
. (13)

Similarly, we find ∆SB by replacing subscripts A and B in (13). So the total change in

entropy of the container is

∆Scontainer = nAR ln

(
VA + VB

VA

)
+ nBR ln

(
VA + VB

VB

)
. (14)

2. Now this process is irreversible, so one should not simply integrate dQ/T to find ∆S.

What one needs to do is find a reversible process that leads to the same outcome, find

its change in entropy, and then use that entropy is a state function to find the change

in entropy for process 1. But we have just done exactly this! We just calculated the

entropy change of process 2, which has the same start and end states as process 1 (gases

go from separated to mixed). Since entropy is a state function, we therefore know that

∆Scontainer = nAR ln

(
VA + VB

VA

)
+ nBR ln

(
VA + VB

VB

)
. (15)

One may be wondering if the end state truly is the same for these two processes.



Remember that for free expansion (where you poke a hole in a container and let the

gas spread out), the kinetic energy of each molecule doesn’t change, so temperature is

unchanged. So the end state of the gas is at the same temperature as the start, only

the gases both occupy the full volume and are mixed together. This is exactly the same

end state as process 2.

3. Here, one could just notice instantly that process 2 is isothermal, so totally reversible,

and therefore conclude that the change in entropy of the universe must be zero. There-

fore, the change of entropy of the reservoirs must be minus that of the container, found

in (14). To be thorough, I will also show here how to actually calculate it and check

this conjecture is correct.

The reservoir here is isothermally (so reversibly) giving heat to the gas. So its change

in entropy is

∆Sres =

∫
dQrev

T
=

∫
dQisothermal

T
(16)

=
1

T

∫
dQ (T constant here) (17)

(18)

Observe that
∫
dQ is the total heat added to the reservoir. Since any heat added to

the reservoir is lost by the gas, we know this is just minus the heat change of the gas.

Note that here, the gas gained heat, so we know the reservoir lost heat, so we expect a

negative answer.

∆Sres =
1

T

∫
−dQgas. (19)

But we have already found this integral in (8). So we are done here, we can see that the

change of entropy of the surroundings is equal and opposite to the change in entropy

of the gas.

∆Ssurroundings = −nAR ln

(
VA + VB

VA

)
− nBR ln

(
VA + VB

VB

)
. (20)



As a final comment, notice that for process 1, there is no heat exchange with the sur-

roundings. So the surroundings can be thought of as undergoing an isothermal process

with zero heat exchange, so the change in entropy of the surroundings is zero. Hence, the

change in entropy of the universe in process 1 is the total (14), and so we see process 1 is

irreversible.


	Rubric

