Second Midterm Solutions

Place all answers on the question sheet provided. The exam is closed textbook/notes/handouts/homework. You are allowed to use a calculator, but not a computer, tablet or smartphone, as well as a two-page cheat sheet. Write all answers clearly and in complete sentences. All answers should be supported by analysis or an argument. This exam has a total of 50 points.

First Name: \qquad
Last Name: \qquad

$1(\mathrm{a})$	$1(\mathrm{~b})$	$1(\mathrm{c})$	$2(\mathrm{a})$	$2(\mathrm{~b})$	$2(\mathrm{c})$	$3(\mathrm{a})$	$3(\mathrm{~b})$	Total

Honor Code

I resolve
i) not to give or receive aid during this examination, and
ii) to take an active part in seeing that other students uphold this Honor Code.

Signature: \qquad

1. Visitors arrive to the Japanese Tea Garden in San Francisco according to a Poisson process with rate 100 per hour. Of all the visitors, 40% of them are residents of San Francisco, and the remaining 60% are not. Admission to the garden is $\$ 9$ per person for non-residents and $\$ 6$ for residents. The garden is open from 9:00 am to $6: 00 \mathrm{pm}$, a total of 9 hours.
(a) [7 PTS] Compute the expected revenue for one day (9 hours) from visitors to the Japanese Tea Garden.

Solution:

Let $N_{R}(t)$ denote the number of residents visiting the garden during [0, t], and let $N_{N R}(t)$ denote the corresponding number of non-residents. Note that $N_{R}(t)$ and $N_{N R}(t)$ are independent Poisson random variables with means $100(0.4) t$ and $100(0.6) t$, respectively. The total revenue from visitors is then

$$
9 N_{R}(9)+6 N_{N R}(9)
$$

and its expected value is

$$
9 E\left[N_{R}(9)\right]+6 E\left[N_{N R}(9)\right]=9(100)(0.6) 9+6(100)(0.4) 9=7020
$$

(b) [7 PTs $]$ Assuming that there were a total of $n=2 k$ visitors to the garden on Monday, what is the probability that there were strictly more residents than non-residents? (Your answer will be in terms of k.)

Solution:

Using the notation from part (a), we want to compute

$$
P\left(N_{R}(9) \geq k+1 \mid N_{R}(9)+N_{N R}(9)=2 k\right)
$$

Now use the fact that conditionally on $\left\{N_{R}(9)+N_{N R}(9)=2 k\right\}$ we have that $N_{R}(9)$ is Binomial with parameters $(2 k, 0.4)$ to compute

$$
P\left(N_{R}(9) \geq k+1 \mid N_{R}(9)+N_{N R}(9)=2 k\right)=\sum_{i=k+1}^{2 k}\binom{2 k}{i}(0.4)^{i}(0.6)^{2 k-i}
$$

(c) [5 PTs] Of all visitors to the Japanese Tea Garden, 30% are children under 11 years old. Compute the probability that no children under 11 visit the garden between 10:00 am and 1:00 pm.
Solution:
Let $N_{C}(t)$ denote the number of children under 11 who visit the garden during $[0, t]$, and note that $N_{C}(t)$ is a Poisson random variable with mean $100(0.3) t$. It follows that the probability we want is

$$
P\left(N_{C}(3)=0\right)=e^{-90}
$$

2. A local bubble tea store has two people working at the register, call them A and $B . A$ is very efficient and provides service to customers at rate μ_{A}, while B is slower and provides service at rate $\mu_{B}<\mu_{A}$. Customers arrive to the store according to a Poisson process with rate λ, and go straight to a cash register if one is available. All times are measured in minutes. Customers who arrive and find both cashiers busy join a queue, and a customer who finds both cash registers empty choses with equal probability one of the two. Let $X(t)$ the number of customers either at the cash registers or in the queue; all the service times of customers are independent and exponentially distributed (with rates that depend on which cashier services them). We model $\{X(t): t \geq 0\}$ as a continuous-time Markov chain on the states $\{0,(1,0),(0,1), 2,3,4, \ldots\}$, where state $(1,0)$ means that there is one customer being served by cashier A, state $(0,1)$ means that there is one customer being served at cashier B, and state $i=0,2,3,4, \ldots$ means there are a total of i customers in the system.
(a) [5 PTS] Draw a rate diagram for $\{X(t): t \geq 0\}$. Solution:

(b) [5 PTS $]$ Write down the rate matrix Q for $\{X(t): t \geq 0\}$. Solution:

$$
Q=\left[\begin{array}{ccccccc}
-\lambda & \lambda / 2 & \lambda / 2 & 0 & 0 & 0 & \cdots \\
\mu_{A} & -\left(\lambda+\mu_{A}\right) & \lambda & 0 & 0 & 0 & \cdots \\
\mu_{B} & 0 & -\left(\lambda+\mu_{B}\right) & \lambda & 0 & 0 & \cdots \\
0 & \mu_{B} & \mu_{A} & -\left(\lambda+\mu_{A}+\mu_{B}\right) & \lambda & 0 & \cdots \\
0 & 0 & 0 & \mu_{A}+\mu_{B} & -\left(\lambda+\mu_{A}+\mu_{B}\right) & \lambda & \cdots \\
0 & 0 & 0 & 0 & \mu_{A}+\mu_{B} & -\left(\lambda+\mu_{A}+\mu_{B}\right) & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right]
$$

(c) [7 PTS $]$ At $2: 58 \mathrm{pm}$ two friends, Mary and Anne, are standing in queue waiting to get their bubble teas, with Mary standing behind Anne and Anne at the front of the queue. At 3:00 pm Anne starts placing her order with cashier A. How much longer past 3:00 pm can Mary and Anne expect to both be done getting their bubble teas?

Solution:

Note that Mary will start her service once either Anne or the other customer being helped by B is done, and depending on who that is, she'll have to wait for an exponential time to get her bubble tea, call this waiting time W. Call Anne's service time χ_{1}. Once she starts being served, her service time, call it χ_{2} will be exponentially distributed, with a rate that depends on who gets to serve her. Let T denote the time when both will be done. Note that $T=W+\chi_{2}$ if Mary is served by cashier A, and $T=W+\max \left\{\chi_{1}, \chi_{2}\right\}$ if Mary is served by cashier B. Conditioning on who finishes first between Anne and the other customer we obtain that

$$
\begin{aligned}
E[T]= & E[W]+E\left[\chi_{2} \mid \text { Anne finishes first }\right] P \text { (Anne finishes first) } \\
& +E\left[\max \left\{\chi_{1}, \chi_{2}\right\} \mid \text { other customer finishes first }\right] P \text { (other customer finishes first) } \\
= & \frac{1}{\mu_{A}+\mu_{B}}+E\left[\operatorname{Exp}\left(\mu_{A}\right)\right] \cdot \frac{\mu_{A}}{\mu_{A}+\mu_{B}} \\
& +E\left[\max \left\{\operatorname{Exp}\left(\mu_{A}\right), \operatorname{Exp}\left(\mu_{B}\right)\right\}\right] \cdot \frac{\mu_{B}}{\mu_{A}+\mu_{B}} \\
= & \frac{1}{\mu_{A}+\mu_{B}}+\frac{1}{\mu_{A}} \cdot \frac{\mu_{A}}{\mu_{A}+\mu_{B}} \\
& +E\left[\operatorname{Exp}\left(\mu_{A}\right)+\operatorname{Exp}\left(\mu_{B}\right)-\min \left\{\operatorname{Exp}\left(\mu_{A}\right), \operatorname{Exp}\left(\mu_{B}\right)\right\}\right] \cdot \frac{\mu_{B}}{\mu_{A}+\mu_{B}} \\
= & \frac{2}{\mu_{A}+\mu_{B}}+\left(\frac{1}{\mu_{A}}+\frac{1}{\mu_{B}}-\frac{1}{\mu_{A}+\mu_{B}}\right) \frac{\mu_{B}}{\mu_{A}+\mu_{B}} \\
= & \frac{3}{\mu_{A}+\mu_{B}}+\frac{\mu_{B}^{2}}{\mu_{A}\left(\mu_{A}+\mu_{B}\right)^{2}}
\end{aligned}
$$

3. A small campus coffee shop is operated by a single employee who has a habit of taking "long" breaks from work. In particular, every time he finishes helping a customer and there are no other customers waiting in line he goes to back room to play video games on his phone for a time that is uniformly distributed between 5 and 10 minutes. When he returns from his break he serves customers until there is no one waiting in line, and then immediately takes another break. If upon returning from a break there are no customers waiting for him, he immediately starts a new break. Customers arrive to the coffee shop according to a Poisson process with rate 8 per hour.
(a) [7 PTs] Compute the mean and variance of the expected number of customers waiting to be served after he returns from one of his breaks.

Solution:

Let U be the duration of a break, which is uniformly distributed on [5, 10]. Then the number of customers waiting to be served after a break can be written as $N(U)$, where $\{N(t): t \geq 0\}$ is a Poisson process with rate $8 / 60=2 / 15$ per minute. Therefore, using the formula for the iterated expectations we get:

$$
E[N(U)]=E[E[N(U) \mid U]]=E[(2 / 15) U]=(2 / 15) E[U]=\frac{2}{15} \cdot \frac{5+10}{2}=1
$$

To compute the variance use the total variance formula to obtain:

$$
\begin{aligned}
\operatorname{var}(N(U)) & =E[\operatorname{var}(N(U) \mid U)]+\operatorname{var}(E[N(U) \mid U]) \\
& =E[(2 / 15) U]+\operatorname{var}((2 / 15) U) \\
& =\frac{2}{15} \cdot \frac{5+10}{2}+\left(\frac{2}{15}\right)^{2} \cdot \frac{(10-5)^{2}}{12} \\
& =1+\frac{1}{27}
\end{aligned}
$$

(b) [7 PTS $]$ Compute the probability that there are no customers waiting for him after returning from a break.
Solution:
By conditioning on U we obtain:

$$
\begin{aligned}
P(N(U)=0) & =\int_{5}^{10} P(N(U)=0 \mid U=u) \frac{1}{10-5} d u \\
& =\frac{1}{5} \int_{5}^{10} P(N(u)=0) d u \\
& =\frac{1}{5} \int_{5}^{10} e^{-(2 / 15) u} d u \\
& =\left.\frac{-3}{2} e^{-(2 / 15) u}\right|_{5} ^{10} \\
& =\frac{3}{2}\left(e^{-2 / 3}-e^{-4 / 3}\right)
\end{aligned}
$$

