
EE 120: Signals and Systems
Midterm 2
November 10, 2018

UNIVERSITY OF CALIFORNIA BERKELEY
Department of EECS

Problem 1 (75 Points) [Dereverberation] In this problem well explore aspects of
the phenomenon of reverberation and the signal processing of dereverberation.

Reverberation of a signal x is the superposition of the signal with delayed and
weighted copies of itself. Reverberation is used by the music industry to enhance
the voices of vocal artists. Performance halls, too, are often acoustically designed
to reverberate the voices of artists and the sounds of musical instruments during
performances.

In this problem well stay entirely in the discrete-time realm. In particular, we’ll
consider the reverberation model

∀n ∈ Z, y(n) = x(n) + αx(n−N) + α2x(n− 2N) + α3x(n− 3N) + ...

=
∞∑
`=0

α`x(n− `N)

where 0 < α < 1 represents an attenuation factor that could be due to reflection of
the input signal x from a barrier; N ∈ 1, 2, 3, ... denotes the fundamental delay in
samples; and y is the output signal representing the reverberated version of x.

The reverberation model is well-represented by a causal, BIBO-stable DT-LTI sys-
tem G having frequency response G(ω) and impulse response g(n).

(a) Determine a reasonably simple expression for, and provide a well- labeled
plot of, the impulse response g(n).

Solution:
Plugging in x(n) = δ(n) and y(n) = g(n), we have:

g(n) =
∞∑
`=0

α`δ(n− `N) =

{
α`u(`), ` mod N = 0

0, otherwise

So the impulse response is a right-sided decaying exponential of rate α up-
sampled by a factor of N . The decay occurs because 0 < α < 1 (note that
we are guaranteed decay because α is strictly less than 1), and the plot must
reflect the decaying nature of the signal:
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(b) (20 points) Determine a reasonably simple expression for the frequency re-
sponse G(ω), and provide a well-labeled plot of the magnitude response
|G(ω)|. You may tackle this part independently of the previous one.

Solution:
From the analysis equation,

G(ω) =
+∞∑

n=−∞

g(n)e−iωn (1)

=
+∞∑
k=0

αne−iωkN (2)

=
1

1− αe−iωN
(3)

where (1) is the DTFT analysis equation, (2) is due to (a), and (3) is the for-
mula for the infinite sum of a geometric series, which we may apply since
0 < α < 1 is given in the problem.

−2π/N −π/N 0 π/N 2π/N
0

1
1+α

1
1−α

ω

|G
(ω

)|
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(c) (15 points) The input-output behavior of the system G is described by the
following linear, constant-coefficient difference equation:

y(n) = βy(n− γ) + x(n− µ)

where β ∈ R, γ, µ ∈ Z. Determine β, γ, µ in terms of the known parameters
α,N .

Solution:
At this point, we can read off the inverse Fourier transform of the frequency
response of the filter G.

G(ω) =
1

1− αe−iωN
=⇒ y(n)− αy(n−N) = x(n)

Reorganizing to match the given form, we can then read off the required
parameters:

y(n) = αy(n−N) + x(n)

=⇒ β = α

γ = N

µ = 0

(d) In some contexts reverberation is undesirable—for example, if the delay N is
too long. In this and other scenarios we want to devise system to eliminate
reverberation. In particular, we want to design a DT-LTI system H such that
when its placed in series with G, we can recover the original signal x from y.

(i) Determine a reasonably simple expression for, and provide a well-labeled
plot of, the impulse response h(n) of the system H.
Solution:
We use the inverse filter equation:

H(ω)G(ω) = 1

H(ω) =
1

G(ω)

H(ω) = 1− αe−iωN

Now, we pattern match to obtain the impulse response. We know the
Fourier transform pair from our formula sheet: δ(n − N)

F←→ e−iωN .
Therefore:

h(n) = δ(n)− αδ(n−N)
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Here’s a plot:
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(ii) Determine a reasonably simple expression for the frequency response
H(ω), and provide a well-labeled plot of the magnitude response |H(ω)|
of the inverse system H.
Solution:
We see from part d(i) that:

H(ω) = 1− αe−iωN

|H(ω)| = |eiωN(1− αe−iωN)| = |eiωN − α|

The second statement is true because phase shifts do not change the
magnitude. Drawing this on a unit circle, we see that the maximum
and minimum value are obtained when eiωN and −α are colinear. The
minimum value is obtained at ω = 0, |H(0)| = 1 − α. The maximum
value is obtained at ω = π/N , |H(π/N)| = 1 + α. We also see that H(ω)
is 2π/N peridic, resulting in the following plot:

−2π/N −π/N 0 π/N 2π/N

1− α

1 + α

t

|H
(ω

)|

4



Problem 2 (95 points) The frequency response of a CT-LTI filter H is given by

∀ω ∈ R, ∃σ > 0 : H(ω) = e−σ|ω|

(a) (15 points) Show that the impulse response h(t) of the filter is of the form

∀ t ∈ R, ∃A,B > 0, h(t) =
A

B2 + t2

and determine reasonably simple expressions for the constant parameters A
and B in terms of σ.
Solution:

h(t) =
1

2π

∫ ∞
−∞

H(ω)eiωt dω

=
1

2π

∫ ∞
0

e−σωeiωt dω +
1

2π

∫ 0

−∞
eσωeiωt dω

=
1

2π

[∫ ∞
0

eω(it−σ) dω +

∫ 0

−∞
eω(it+σ) dω

]
=

1

2π

[
eω(it−σ)

it− σ

∣∣∣∣∞
0

+
eω(it+σ)

it+ σ

∣∣∣∣0
−∞

]

=
1

2π

[
− 1

it− σ
+

1

it+ σ

]
=

1

2π

−2σ

−σ2 − t2
=

σ
π

σ2 + t2

From which we read off

A =
σ

π
B = σ

(b) (15 points) Provide a well-labeled plot of h(t) and determine the values of t
at which h(t) ≤ 1

2
h(0).

Solution:

h(0) =
σ
π

σ2 + t2

∣∣∣∣
t=0

=
1

σπ

We are then looking to find the set

T =

{
t ∈ R : h(t) ≤ 1

2σπ

}
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Expanding and simplifying this inequality, we have
σ
π

σ2 + t2
≤ 1

2σπ

t2 + σ2 ≥ 2σ2

t2 ≥ σ2

Many students failed to obtain the set T from here. We must realize that T is
not a connected set, and is in fact the union of two disjoint sets:

T = {t ∈ R : t ≤ −σ} ∪ {t ∈ R : t ≥ σ}

We can write this concisely as

T = {t ∈ R : |t| ≥ σ}

For the plot, points were awarded for the following, with points awarded
generously for error carried forward:

• Correct shape, shown below.

• h(0) =
1

σπ
=

A

B2

−σ 0 σ
0

1
2σπ

1
σπ

t

h
(t

)

(c) (5 points) Select the strongest true statement from the following:

(a) The filter H must be causal.

(b) The filter H cannot be causal.

(c) We have insufficient information to determine whether the filter H is
causal.

Provide a succinct, but clear and convincing, explanation for your selection.
Solution:
It is clear from the plot in the previous part that h(t) 6= 0, ∀ t > 0.
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(d) (15 points) Select the strongest true statement from the following:

(a) The filter H must be BIBO stable.

(b) The filter H cannot be BIBO stable.

(c) We have insufficient information to determine whether the filter H is
BIBO stable.

Provide a succint, but clear and convincing explanation for your selection. If
you choose (a) or (b), then you must, as part of your explanation, evaluate∫ +∞

−∞
|h(t)| dt

Solution:
To show that the filter must be BIBO stable, we demonstrate that the impulse
response is absolutely integrable:∫ +∞

−∞
|h(t)| dt =

∫ +∞

−∞

∣∣∣∣ σ
π

σ2 + t2

∣∣∣∣ dt (4)

=

∫ +∞

−∞

σ
π

σ2 + t2
dt (5)

=

∫ +∞

−∞

σ
π

σ2 + t2
e−i0tdt (6)

= H(0) = e−σ|0| = 1 (7)

Where (2) follows from the nonnegativity of h(n), (3) follows from the fact
that e−i0t = 1, ∀ t, and (4) follows from the analysis equation.

(e) (20 points) For this part only, suppose we apply the input signal

∀t ∈ R, x(t) =
sin(t)

πt

to the filter H. Determine a reasonably simple expression for

Ey =

∫ +∞

−∞
|y(t)|2dt

the energy of the corresponding output signal y.

Solution:
Note that:

X(ω) =

{
1 |ω| ≤ 1

0 else
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In general, we have:

Y (ω) = H(ω)X(ω)

and so

Y (ω) =

{
e−σ|ω| |ω| ≤ 1

0 else

Parseval’s Theorem states∫ +∞

−∞
|y(t)|2dt =

1

2π

∫ +∞

−∞
|Y (ω)|2dω

So we compute

Ey =
1

2π

∫ +∞

−∞
|Y (ω)|2dω =

1

2π

∫ 1

−1

|H(ω)|2dω =
1

2π

∫ 1

−1

|e−σ|ω||2dω =
1

2π

∫ 1

−1

e−2σ|ω|dω

=
1

2π

(∫ 0

−1

e2σωdω +

∫ 1

0

e−2σωdω
)

=
1

2π

(e2σω

2σ

∣∣∣0
−1
− e−2σω

2σ

∣∣∣1
0

)

=
1

2π

(1− e−2σ

2σ
− e−2σ − 1

2σ

)
=

1

2πσ

(
1− e−2σ

)
Note that |Y (ω)|2 is an even function, so we can jump from

1

2π

∫ 1

−1

e−2σ|ω|dω

straight to

1

2π
2

∫ 1

0

e−2σωdω

for an easier alternative way to solve the integral.

(f) (25 Points) For this part only, suppose we apply the standard impulse train
as the input signal to the filter H. That is, let

∀t ∈ R and ∃T > 0, x(t) =
+∞∑

n=−∞

δ(t− nT )

(a) (15 points) Provide a well-labeled plot of Y (ω), the spectrum of the cor-
responding output signal y(t).
We know Y (ω) = H(ω)X(ω), and H(ω) is given, so we just need to find
X(ω).
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Since x(t) is a T -periodic signal, it has a CTFS represenation. For con-
venience, let ω0 = 2π/T denote the fundamental frequency. Then, we
have

x(t) =
∞∑

k=−∞

Xke
ikω0t (8)

Xk =
1

T

∫ T/2

−T/2
x(t) e−ikω0tdt (9)

=
1

T

∫ T/2

−T/2
δ(t)e−ikω0(0)dt (10)

=
1

T
(11)

x(t) =
1

T

∞∑
k=−∞

eikω0t (12)

In general, for a fixed Ω ∈ R,

eiΩt
F←→ 2πδ(ω − Ω) (13)

Applying this CTFT pair to (12),

x(t)
F←→X(ω) =

2π

T

∞∑
k=−∞

δ(ω − kω0) (14)

y(t)
F←→Y (ω) =

2π

T

∞∑
k=−∞

e−σ|ω|δ(ω − kω0) (15)

=
2π

T

∞∑
k=−∞

e−σ|kω0|δ(ω − kω0) (16)

=
2π

T

∞∑
k=−∞

e−σ|2πk/T |δ

(
ω − k2π

T

)
(17)

A common mistake was taking the CTFT of x(t) directly to get

X(ω) =
∞∑

n=−∞

e−iωnT (18)

The CTFT synthesis and analysis equations will only converge to use-
ful values for absolutely-integrable or square-integrable signals. How-
ever, it turns out that signals with CTFS representations do have Fourier
transforms, regardless of the aforementioned summability conditions.
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(b) (10 Points) Since the input x to the filter is periodic, so is the output y.
Determine a reasonably simple expression for the coefficients Yk in the
CTFS expansion of y:

y(t) =
+∞∑

k=−∞

Yke
i2πkt/T

You may tackle this part independently of part (i), but your results in
the two parts must be consistent.
Solution 1: x(t) is a linear combination of complex exponentials, so we
can apply the eigenfunction property of LTI systems.

x(t) =
∞∑

k=−∞

1

T
eikω0t (19)

y(t) =
∞∑

k=−∞

1

T
H(kω0)eikω0t (20)

=
∞∑

k=−∞

1

T
e−σ|2πk/T |︸ ︷︷ ︸
Yk

eikω0t (21)
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Solution 2: Apply the synthesis equation to retrieve y(t) from Y (ω).

y(t) =
1

2π

∫ ∞
−∞

Y (ω)eiωtdω (22)

=
1

2π

∫ ∞
−∞

(
2π

T

∞∑
k=−∞

e−σ|2πk/T |δ

(
ω − k2π

T

))
eiωtdω (23)

=
∞∑

k=−∞

1

T
e−σ|2πk/T |

∫ ∞
−∞

δ

(
ω − k2π

T

)
eiωtdω (24)

=
∞∑

k=−∞

1

T
e−σ|2πk/T |ei2πkt/T

∫ ∞
−∞

δ

(
ω − k2π

T

)
dω (25)

=
∞∑

k=−∞

1

T
e−σ|2πk/T |︸ ︷︷ ︸
Yk

ei2πkt/T (26)

Problem 3 (20 points) Consider a BIBO stable DT-LTI filter H that has frequency
response H(ω) and a real-valued impulse response h(n) each of which is known.
We apply the input signal

∀n ∈ Z, x(n) = cos(ω0n)

to the filter. Show that the corresponding response is

∀n ∈ Z, y(n) = |H(ω0)| cos
(
ω0n+ ∠H(ω0)

)
Solution:
We begin with the standard approach of recognizing that the input consists of two
frequencies, which can be considered to be scaled separately by an LTI system:

x(n) =
eiω0n+e−iω0n

2
=⇒ y(n) = H(ω0)

eiω0n

2
+H(−ω0)

e−iω0n

2

Motivated by our observation that the desired expression for the output is in terms
of H(ω0), we seek to express H(−ω0) in terms of H(ω0). Here, the fact that h(n) is
real-valued comes in handy, allowing us to apply conjugate symmetry. Addition-
ally, the form of the final expression suggests a phase-magnitude decomposition:

H(−ω0) = H∗(ω0) = |H(ω0)| e−i∠H(ω0)

H(ω0) = |H(ω0)| ei∠H(ω0)

Substituting this back into our expression for y(n), we get

y(n) = |H(ω0)|
(
eiω0n+∠H(ω0) + e−iω0n−i∠H(ω0)

2

)
= |H(ω0)| cos

(
ω0n+ ∠H(ω0)

)
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