Problem 1. (20 Points)
A liquid containing dissolved component A flows through a pipe of diameter D with a volumetric flow rate Q .
a. (4 points) Write an expression for the flux of A in the axial (z) direction of the pipe and explain what will be the dominant form of mass transfer.

The convective flux

$$
\begin{aligned}
& V_{Z}=Q / A \\
& N_{A_{F I}}=-D_{H S} \frac{\partial_{C_{A}}}{E}+C_{A} i_{Z}+2
\end{aligned}
$$ axial

b. (4 points) If mass A does not react in the liquid or adsorb on the pipe wall, what is the flux of A in the radial (r) direction? Be sure to give a short explanation for your result.
x^{2} The flux of A in the radial durectorn in

$$
N_{A_{r}}=-D_{A-3} \frac{\partial C_{t}}{\partial r}=0
$$

c. (4 points) Now assume that A adsorbs on the wall and that the concentration of A very near the wall is nearly zero. How does this change affect your answers to parts i and ii of this problem?
of t is adratied on the wall aud the ret of adsorption is very apace $C_{k}(R, z)=0$.

$$
\begin{aligned}
N_{A A} & =-D_{A B} \frac{\partial C_{A}}{\partial v} \neq 0 / 14 \text { writ t } \\
& =k\left(\left\langle C_{A}\right\rangle-C_{n, \omega}\right) \quad C_{A, \omega}=0
\end{aligned}
$$

d. (4 points) Write down the fluxes of A in the z and r direction and the steady-state mole balance for A using the assumption described in part c of this problem. What are the boundary conditions for the mole balance? Hint: develop the mole balance for A assuming that the concentration of A is constant across the pipe radius and equal to $\left\langle C_{A}\right\rangle$ except at the pipe wall. $\left.<\mathrm{C}_{\mathrm{A}}\right\rangle$ is the mixing-cup average concentration of A .

$$
N_{A_{z}}=V\left\langle c_{H}\right\rangle{ }^{\prime} N_{H_{r}}=k\left\langle c_{A}\right\rangle
$$

For the male bal., do an integer beloved on ditterentid slice $\frac{d \pi}{\pi R} R d z$. Then

$$
+\pi R^{2} \frac{d}{d z}\left(\bar{V}\left\langle e_{n}\right\rangle\right)+2 \pi R k\left\langle C_{k}\right\rangle=0
$$

$$
\text { or } \quad V \frac{d\left\langle c_{n}\right\rangle}{d z}+\frac{z}{k} k\left\langle c_{A}\right\rangle=0
$$

- Assumes $V \neq f(z)$
e. (4 points) Sketch the radially averaged concentration of $\mathrm{A},\left\langle\mathrm{C}_{\mathrm{A}}\right\rangle$, in the z direction.

Problem 2. (25 points)
A current field of research is further understanding of dopamine (DA) dynamics in the brain. One way that this can be understood is by obtaining a live brain slice, roughly $300 \mu \mathrm{~m}$ thick, from a mouse. In order to keep the slice alive, researchers flow artificial cerebral spinal fluid (aCSF) over the slice at a rate of $1 \mathrm{~cm}^{3} / \min$. During imaging, the slice $(0.5 \mathrm{~cm} \times 1 \mathrm{~cm})$ is placed on a glass slide with the longer dimension $(1 \mathrm{~cm})$ placed perpendicular to fluid flow. We can assume the neurons sustain a concentration of $1 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$ (or $1 \times 10^{-9} \mathrm{~mol} / \mathrm{cm}^{3}$) at all points in the slice and the properties of aCSF are the same as those of pure water. You also know the diffusion coefficient of dopamine in water is $7.6 \times 10^{-10} \mathrm{~m}^{2} / \mathrm{s}$ (or $7.6 \times 10^{-6} \mathrm{~cm}^{2} / \mathrm{s}$) and the kinematic viscosity is 1×10^{-6} $\mathrm{m}^{2} / \mathrm{s}$ (or $1 \times 10^{-2} \mathrm{~cm}^{2} / \mathrm{s}$). The aim of this experiment is to understand how much dopamine is lost to the flow of aCSF.
a. Draw a picture of the system and label all parts and show the dimensions.

b. What is the mole balance that describes the profile of DA in the water and what are the boundary conditions for this balance? Be sure to explain what assumptions you have made in in the equation that you give for the mole balance and why they are made. As for $B C$, there can
(1) Incompressible Newtonian Fluid (water), $\quad+1.5$ B.C. (0.75 ea) be quite a bit in the total solution of B.C. the Below are the important ones for this problem
(2) All conc is coming from the surface.
(3) Boundary lager is diffusion dominated. in Z
(4) Bath is large enough to Sustain a
(5) Concentration of zero. +2 Assumptions
System is at steady state. (min of 2
B.L. mole balance. +1.5 for $C_{D A}^{B A T H}\left(z=\delta_{c}\right)=0 \mathrm{~mol} / \mathrm{cm}^{3}$ $C_{D A}^{\text {Sort }}(z=0)=1 \times 10^{-9} \mathrm{~mol} / \mathrm{cm}^{3}$
(6) Conc only a function of z
(7) No R xn

Solution from Blausius written
Many other solutions given credit due to the nature of the problem. for time
based balance
mole bala
$(1 / 1.5) \rightarrow \frac{d n_{D A}}{d t}=k_{C}\left(C_{P A}^{S}-C_{D A}^{B}\right) . S_{A}=$ totul moles lost over
time
c. Draw a concentration profile for this system.

(+1) Label Sc
$(+3)$ curvature
$(+1)$ mark conc@ $C_{D A}^{B}$ 韦 $C_{D A}^{S}$
d. Write an expression for the flux of DA from the brain slice for a fixed position (x) in the direction of the flow?
+2 Sherwood Correlation

$$
\begin{aligned}
& S_{h x}=0.332 R_{e}^{1 / 2} S_{c}^{1 / 3}=\frac{K_{c} x}{D} \Rightarrow \frac{S h_{x} D}{x}=K_{c} \\
& N_{A x}=K_{c}\left(C_{D A}^{S}-\left(C_{D A}\right)+2\right. \text { Flux Equation } \\
& N_{A x}=\frac{0.332 D}{x} \operatorname{Re}^{1 / 2} S_{c}^{1 / 3} C_{D A}^{S}+1 \text { Plug in }
\end{aligned}
$$

e. What is the average flux of DA from the surface?

Using a similar Analogy for L
Due to unit error in Problem Statement

$$
\begin{aligned}
& S C_{L}=1315.79 \rightarrow S_{C}^{1 / 3}=10.958 \\
& R e_{L}=0.833 \rightarrow R_{e}^{1 / 2}=0.918 \\
& N_{D H L}=\frac{0.664\left(7.6 \times 10^{-6} \mathrm{~cm}^{2} / \mathrm{s}\right)}{(0.5 \mathrm{~cm})}(0.918)(10.958)\left(1 \times 10^{-9} \mathrm{~mol} / \mathrm{cm}^{3}\right) \\
& +2 \text { for any Sherwood correlation } \\
& N_{D A_{L}}=1.01 \times 10^{-13} \mathrm{~mol} / \mathrm{cm}^{2} . \mathrm{s} \\
& \text { correct numerical answer }
\end{aligned}
$$

Problem 3. (30 points)
Liquid A is flowing with velocity $\mathrm{v}=0.001 \mathrm{~m} / \mathrm{s}$ through a cylindrical reactor of length $\mathrm{L}=0.5 \mathrm{~m}$ and diameter $\mathrm{D}=0.1 \mathrm{~m}$ that is completely filled with spherical catalyst pellets of diameter $\mathrm{D}_{\mathrm{p}}=1$ cm . A forms B via the reaction $A \rightarrow B$ at the surface of the catalyst pellets with reaction rate coefficient $\mathrm{k}=0.1 \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1}$. The concentration of A in the bulk fluid is $1 \mathrm{~mol} / \mathrm{m}^{3}$, and the diffusivity of A is $D_{A B}=1 \times 10^{-2} \mathrm{~m}^{2} / \mathrm{s}$. The kinematic viscosity is $v=1 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$.
a. (5 points) What is the mole balance for this problem in terms of C_{A} ? Neglect radial concentration gradients in the reactor.
Overall muss bulance:

$\left.+\frac{r^{2} L_{2}}{\partial z^{2}}\right]+R_{A}$
(2) Neglect r gadiut +1
(3) Neglect θ gardens (spmedits) +1

b. (10 points) Nondimensionalize the mole balance and show which terms) can be neglected

$$
\frac{\frac{v_{7} L}{D_{n}} \frac{2 \theta}{\partial y}}{\sum_{p_{e}}}=\frac{\partial^{2} \theta}{\partial y_{1}^{2}}-\frac{k L^{2}}{b_{n \theta}} \theta
$$

$$
\begin{aligned}
& \text { based on the parameters given. } \\
& \text { acme ers: } y=\frac{z}{L}+1, \theta=\frac{C_{A}}{C_{A 0}}+1 \\
& v_{z} \frac{\partial\left(\theta \theta_{A P}\right)}{\partial(L-z)}=D_{A B} \frac{\partial^{2}\left(c_{A s} \theta\right)}{\partial\left(1\left(-z_{i}\right)^{2}\right.} \quad k \theta C_{10} \\
& \frac{v_{z}}{L} \frac{\partial \theta}{\partial z}=\frac{D_{A B}}{L^{2}} \frac{2 \theta}{\partial z^{2}}-k \theta+3
\end{aligned}
$$

\qquad
c. (10 points) Now consider a single catalyst pellet in the reactor. Assume the particles are far enough apart so that $\mathrm{C}=\mathrm{C}_{\mathrm{A}, \text { bulk }}$ far from the particle. Assume the fluid around the particle is stagnant (reasonable given the packed nature of the reactor). What is the flux of
A at the particle surface assuming the reaction rate is very rapid? Assume the pellet radius
+2 is 0.5 cm .
for sbemptins Assumption!: (1) S.S. (2) $C_{A}(\lambda$ only (3) No convection (4) No NAan

$$
o_{\text {option }}: \int 0=o_{f_{B}} \frac{1}{r^{2}}\left(\frac{\partial}{\partial r}\left(r^{2} \frac{\partial x_{A}}{d r}\right)+2\right. \text { tar en }
$$

$$
\left.\int C_{1}=\int r^{2} \frac{-C_{A}}{d r} \quad B_{C} C_{s}^{\prime} \cdot C_{A}(م-)_{0}\right)=C_{A \infty}
$$

$$
-\frac{C_{1}}{r}+C_{2}=C_{A}(r) \quad C_{A}(r=R)=0+2
$$

$$
C_{A}(-+\infty)=\frac{-C_{1}}{\infty}+C_{2}=C_{1+\infty} \Rightarrow C_{x+\infty} c^{2} C_{2}
$$

+1 for Lporfile
 for eau

$$
=-D_{A B}\left(\frac{C_{M O}}{R}\right)=1 \cdot 10^{-2} \cdot \frac{1}{0.00 \mathrm{~s}}=2 \mathrm{~mol} / \mathrm{m}^{2} \cdot \mathrm{~s}
$$

$$
+1 \text { for } N_{4} l_{n=R}=2 \mathrm{~mol} / \mathrm{m}^{2} \cdot \mathrm{~s}
$$

d. (5 points) Calculate the mass transfer coefficient, k_{l}, for this system.

$$
\begin{array}{ll}
\left.N_{4}=k_{1} C_{A \infty}-C_{A S}\right)+3 \text { for } \\
2=k_{1}(1-0)
\end{array}
$$

$k_{1}=2 \mathrm{~m} / \mathrm{s}+2$ correct answer -1 for units

SLID \qquad

Problem 4. (25 points)

You are designing a drug patch that consists of a thin polymer film loaded with a drug. When applied to the skin, the drug immediately diffuses from the patch-skin interface into the skin with very little resistance in the skin. The initial concentration of the drug in the patch is $0.50 \mathrm{~mole} / \mathrm{m}^{3}$ and the diffusivity of the drug in the polymer is $\mathrm{D}=2 \times 10^{-11} \mathrm{~m}^{2} / \mathrm{s}$. The thickness of the patch is 0.5 mm .
a. Sketch a concentration profile of the drug within the patch and into the skin layer adjacent to the patch.

b. If the mass transfer resistance of the drug in the skin is negligible, what is the drug concentration at the skin/drug patch interface? Explain your answer with a few words.

$$
\begin{aligned}
& N_{z}=k_{c}\left(c_{A_{i}}-C_{A_{\infty}}\right)=k_{c}\left(C_{A_{i}}\right)+3 c_{i}=0 \\
& \tau_{\text {Interface chic }} i_{\text {In } \operatorname{bad} y}=0 \quad+1 \text { mention of pius } \\
& \text { HT Resistance } \sim 1 / k_{\mathrm{c}}=0 \rightarrow k_{\mathrm{c}} \rightarrow \infty \\
& \text { KC } \\
& N_{z}=K_{i} C_{A_{i}}=\infty e_{\Delta i} \rightarrow c_{A i}=k_{1} /_{\infty}=0
\end{aligned}
$$

c. Assuming unidirectional transport of species in the patch, write down the equation governing the concentration of drug in the patch and explain the initial condition and boundary conditions for this equation.

$$
\begin{aligned}
& \frac{\partial c_{A}}{\partial t}=D_{A} \frac{\partial^{2} c_{A}}{\partial x^{2}}+7 \\
& \left.\frac{\partial c_{A}}{\partial x}\right|_{x=0}=0 \quad n_{0} I_{L x} \text { at interface }+1 \\
& \left.c_{A}\right|_{x=L}=0+1 \\
& \left.C_{A}\right|_{t=0}=C_{A C}+1
\end{aligned}
$$

d. Using the concentration-time charts given at the back of the exam, determine how long it takes for the concentration in the middle of the patch to reach 10% of its initial value.

$$
\begin{aligned}
& (+.5) \\
& n=0.5 \\
& M=0
\end{aligned} \quad Y=\frac{C_{A}^{(+1)}}{C_{A_{0}}}=0.1
$$

$m=0$
$(t 1)$
From Chart: $\left.X=0.9=\frac{D t}{L} \rightarrow t o 0.9 \frac{L^{2}}{D}=4\right)$

