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Spring 2005 MSE111 Midterm 

Prof. Eugene Haller 

3/15/05, 9:40 am 
University of California at Berkeley 

Department of Materials Science and Engineering 
 

80 minutes, 68 points total, 10 pages 

 

Name:____________________________________ 

 

SID:___________________________ 
 
 

Problem 1 2 3 4 5 TOTAL 

Points Possible 7 23 10 12 16 68 

Points       

 
 

SHOW ALL OF YOUR WORK!!! 
Answers given without supporting calculations will be marked wrong, even if they 
are numerically correct.   



2 of 10 

1. (7 pts.) True/False 
CIRCLE T or F indicating whether the statement is true or false 
 

1) Germanium is metallically bonded.          T  F 

2) Metallic bonds are localized.          T  F 

3) Two copper pieces of the same purity but of different dimensions will have different 

resistivities.               T  F  

4) Phonons obey the Pauli exclusion principle.       T  F 

5) Metals have forbidden band gaps.         T  F 

6) In a Hall Effect measurement of a metal, the carrier mobility must be known to 

determine the carrier concentration.         T  F 

7) Phonon energies of Si are much smaller than the band gap energy.  T  F
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2. (23 pts.) Short Answers  

Answer each question within 50 words. 
 

a) (4 pts.) The mass action law of semiconductors is np = ni2.  At what temperature 

does it apply?  Is it valid for extrinsic semiconductors? 
 
 
 
 
 
 
b) (2 pts.) Explain the difference between extrinsic and intrinsic semiconductors.  
 
 
 
 
 
 
 
c) (4 pts.)  At a temperature of 100K and an Fermi energy of 5eV, what is the 
probability of finding an electron at 4.5 eV?  
 
  
 
 
 
 
 
 
d) (4 pts.)  For the same system in part c), what is the probability of finding a hole at 
4.5eV?  
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e) (2 pts.)  At what temperature is there a 50% probability that a state with an energy 
level at the Fermi energy will be occupied by an electron?  
 
 
 
 
 
 
 
 
 
f) (7 pts.)  In intrinsic semiconductors the concentration of free carriers is a strong 

function of temperature.  The intrinsic carrier concentration in Si (Eg=1.1eV) at 300K 

(room temperature) is 2x1010 cm-3.  How much should the Si be cooled to reduce this 

concentration by three orders of magnitude? 
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3. (10 pts.) Davisson and Germer (Electron Diffraction) 
 
An electron beam impinges perpendicularly on a Si (100) surface. Top layer surface 
diffraction is observed.  
a) (5 pts.)  Make a sketch and derive the condition for constructive interference from 

top layer diffraction in terms of the wavelength of incoming electrons λ, distance 
between neighboring Si atoms d and the angle between the incoming beam and the 
diffracted beam θ. (Hint: Only the top atomic layer of Si atoms contribute to the 
diffraction!) 

 
 
 
 
 
 
 
 
 
 
 
  
b) (5 pts.)  Use your result in part a) to find the energy of an electron that is diffracted 

at an angle 25o off this (100) surface.  Assume the distance between Si atoms to be 

dSi = 3.840 Å. Assume only 1st order diffraction happens. (Hint: Use Bragg’s Law if 
you couldn’t get the final result in part a). ) 
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4. (12 pts.) Bonding 
 
The bonding potential can be approximated for many cases by the function  

mn r
B

r
ArE −=)(  

a) (4 pts.)  Sketch the energy E vs separation r for an ionic bond between two atoms of 
opposite charge, making sure to label the bond length r0 and the bond energy Ec: 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) (2 pts.) Explain the origins of the forces that act on the two ions to give the curve its 
shape in two sentences. 
 
 
 
 
 
c) (4 pts.) What is the condition for approximating an ionic bond to a spring that obeys 
Hooke's Law (F=kx)?  Explain your answer in terms of the E vs. r sketch and state 
which feature of this sketch characterizes the “stiffness” of the bond. 
 
 
 
 
 
 
 
d) (2 pts.) What is r0 is terms of A, B, n and m? 
 
 

E 

r
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5. (15 pts.) Kronig-Penney Model 
A condition for the solution of the Schrödinger equation for the Kronig-Penney model of 
a one-dimensional solid is given by 
 

  P sin(αa)
αa

+ cos(αa) = cos(ka)   Eq. 1 

 

  where   
  
P = m*a

h2 V0w    and   
 
α = 2m*E

h2  

 
 
a) (5 pts.)  Sketch the left-hand side of Eq. 1 on the axes given below.  Indicate the 1st 
and 2nd allowed bands and the 1st forbidden band.   
 
 

αa

P
sin(αa)

αa
+ cos(αa)
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5. Continued... Kronig-Penney Model 
 
The Kronig-Penney model can be used to describe to first order the nature of the 
conduction band in superlattice structures. 

 

E1
E2

GaAs GaAs
AlGaAs AlGaAs

w
a

EC
=0 EC=0

V0EC2=

 

 

A conduction electron is exposed to a periodic potential formed by the different bandgaps 

and their offsets between GaAs and Al1-xGaxAs (denoted by AlGaAs in the figure 

above).  The black regions within the GaAs conduction band depict the bands of 
allowed energy, or “mini-bands,” as determined by the Kronig-Penney model.  The 

band demarcated by E1 and E2 refers to the first allowed energy band as calculated from 

the equation on the previous page.  Assume that the conduction band edge in the GaAs 

region is taken as the reference point, (i.e., Ec=0) and that w=40 Å, a=80 Å, m*=0.07me, 

and E1=0.065 eV for which αa=2.77. 
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5. Continued... Kronig-Penney Model 

b) (4 pts.)  Find E2 (for which αa=π).  Give your answer in eV. 

 
 
 
 
 
 
 
 
 
 
 
c) (5 pts.)  What is the magnitude of the barrier, (i.e., EC2=V0)? (Hint: solve for P by 
considering Eq. 1 at αa=2.77, where the first allowed mini-band begins.) 
 
 
 
 
 
 
 
 
 
 
 
 
d) (2 pts.)  If an electron spends 10–12 seconds within the first mini-band, what is the 
uncertainty with which its energy can be measured? 
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Constants 

me=9.11x10
-31

kg  e=-1.6x10-19C      h=6.625x10
-34

J· s 

1Å=1x10
-10

m  1eV=1.6x10
-19

      KeVxkb /1062.8 5−=  

mproton=1.67x10
-27

kg c = 3x108m/s NA=6.02x1023 atoms/mole 
 
Equations:  

       

  

       

  

   
                               
 

 
 

 
 
time-independent Schrödinger equation:  
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