Physics 7A - Midterm 1 Solution Fall 2018 (Hallatschek) GSI: Yi-Chuan Lu

1. (a) Horizontally, the car moves at a constant speed $v_0 \cos \theta$, while vertically it has an initial speed $v_0 \sin \theta$ and experiences a negative acceleration g. So

$$x = v_0 \cos \theta t, \ y = v_0 \sin \theta t - \frac{1}{2}gt^2.$$

- (b) To make the car land at point B(L,0), we set x = L and y = 0 in the two equations above, and eliminate t. It follows that $v_0 = \sqrt{gL/\sin 2\theta}$.
- 2. (a) There are four pieces of rope pulling up the system (man+plate), and each rope has the same tension F. So 4F (M + m)g = (M + m)a, which gives $a = \sqrt{\frac{4F}{(M + m) g}}$.
 - (b) If the man is lifted above the plate, only two pieces of ropes are pulling the man and the other two are pulling the plate. So we have $2F - Mg = Ma_M$ and $2F - mg = ma_m$. Therefore $a_M = \boxed{2F/M - g}$, and $a_m = \boxed{2F/m - g}$. Note that in (a) there is a normal force between m and M, while in (b) the normal

force is absent. This makes the two scenarios different.

3. Let (x_M, y_M) be the position of the top corner of the wedge M, and (x_m, y_m) be the position of the block m. Since the block must move along the surface of the wedge, the displacement of m relative to M must "fit" the surface, as shown in the left figure below. Namely, the **constraint** of the motion is

$$\tan \theta = \frac{y_M - y_m}{x_m - x_M}, \text{ or } y_M - y_m = (x_m - x_M) \tan \theta.$$

Differentiating the equation above with respect to time twice, and using the fact that $\ddot{x}_M = a$, $\ddot{y}_M = 0$, we get $-\ddot{y}_m = (\ddot{x}_m - a) \tan \theta$. From the free body diagram below, we also have:

 $N\sin\theta = m\ddot{x}_m$, and $N\cos\theta - mg = m\ddot{y}_m$.

Eliminating N from these two equations, and using $\theta = \pi/4$, we solve for \ddot{x}_m and \ddot{y}_m :

$$y_{M}-y_{m} \xrightarrow{(x_{M}, y_{M})} \xrightarrow{(x_{M}, y_{M})} \xrightarrow{y_{M}-y_{m}} \xrightarrow{y_{M}-x_{M}} \xrightarrow$$

$$\ddot{x}_m = \frac{a+g}{2}, \ \ddot{y}_m = \frac{a-g}{2}$$

4. See the free body diagram below. Since the car is climbing up a circle of radius R using the static friction force f_s , and at the same time rotating about the center with speed v, it follows that

$$N - mg\cos\theta = \frac{mv^2}{R},$$

$$mg\sin\theta = f_s.$$

Not falling means $N \ge 0$, and not slipping implies $f_s \le \mu_s N$. Imposing these two conditions to the two equations above, we get

$$\begin{cases} \cos\theta + \frac{v^2}{gR} \ge 0 & \text{(not falling)}, \\ \mu_s \ge \frac{\sin\theta}{\cos\theta + v^2/gR} & \text{(not slipping)}, \end{cases} \text{ for all } \theta. \end{cases}$$

Since $\cos \theta$ can be as negative as -1 (when $\theta = \pi$, i.e., at the top of the circle), to ensure the first inequality to hold, we must require $v \ge \sqrt{gR}$. (To ensure the second inequality to hold, we need both $v > \sqrt{gR}$, and $\mu_s \ge 1/\sqrt{(v^2/gR)^2 - 1}$. But we don't need these results for the exam.)

- (a) From the analysis above, the car has to move at a speed $v > v_0 = \sqrt{gR}$ to not fall off from the track.
- (b) If $v < v_0 = \sqrt{gR}$, the car starts to slip when

5. (a) The mass M_3 is pulling the rope connecting M_2 and M_3 , so both M_2 and M_3 have the same acceleration a. The equation of motion for M_2 and M_3 are $T = M_2 a$ and $M_3 g - T = M_3 a$, respectively. Solving these two equations for a and T, we obtain

$$a = \boxed{\frac{M_3g}{M_2 + M_3}}, \text{ and } T = \boxed{\frac{M_2M_3}{M_2 + M_3}g}.$$

In the free body diagram of M_1 below, this tension T is pushing M_1 to the left, so the force F has to oppose it to make M_1 still:

(b) The tension T has to balance M_3 in the vertical direction, so $T = M_3 g$. But the same T also needs to pull M_2 such that M_2 has the same acceleration as the entire system, so $T = M_2 a$. Hence $a = M_3 g/M_2$. The force F that moves entire system $M_1 + M_2 + M_3$ with acceleration a should have magnitude

$$F = \left| \left(M_1 + M_2 + M_3 \right) \frac{M_3 g}{M_2} \right|.$$

(c) Assume M_1 has acceleration $-a\hat{\mathbf{e}}_x$, and M_2 has acceleration $a'\hat{\mathbf{e}}_x$, both relative to ground. Then relative to M_1 , the mass M_2 has acceleration $(a' + a)\hat{\mathbf{e}}_x$. Since the rope has fixed length, a' + a is also the downward acceleration of M_3 . Therefore, we can write

$$T = M_2 a',$$

 $M_3 g - T = M_3 (a' + a).$

Eliminate a', we get $T = M_2 M_3 (g - a) / (M_2 + M_3)$. This tension is pushing M_1 and M_3 (via the wall next to M_3) to the left with acceleration $-a\hat{\mathbf{e}}_x$, so

$$\frac{M_2 M_3}{M_2 + M_3} \left(g - a \right) = \left(M_1 + M_3 \right) a.$$

Solving this equation for a, it follows that

$$a = \boxed{\frac{\mu g}{1 + \mu}}, \text{ where } \mu \equiv \frac{M_2 M_3}{(M_1 + M_3)(M_2 + M_3)}.$$