Physics 7A - Midterm 1 Solution
 Fall 2018 (Hallatschek)
 GSI: Yi-Chuan Lu

1. (a) Horizontally, the car moves at a constant speed $v_{0} \cos \theta$, while vertically it has an initial speed $v_{0} \sin \theta$ and experiences a negative acceleration g. So

$$
x=v_{0} \cos \theta t, y=v_{0} \sin \theta t-\frac{1}{2} g t^{2} .
$$

(b) To make the car land at point $B(L, 0)$, we set $x=L$ and $y=0$ in the two equations above, and eliminate t. It follows that $v_{0}=\sqrt{g L / \sin 2 \theta}$.
2. (a) There are four pieces of rope pulling up the system (man+plate), and each rope has the same tension F. So $4 F-(M+m) g=(M+m) a$, which gives $a=$ $4 F /(M+m)-g$.
(b) If the man is lifted above the plate, only two pieces of ropes are pulling the man and the other two are pulling the plate. So we have $2 F-M g=M a_{M}$ and $2 F-m g=m a_{m}$. Therefore $a_{M}=2 F / M-g$, and $a_{m}=2 F / m-g$.
Note that in (a) there is a normal force between m and M, while in (b) the normal force is absent. This makes the two scenarios different.
3. Let $\left(x_{M}, y_{M}\right)$ be the position of the top corner of the wedge M, and $\left(x_{m}, y_{m}\right)$ be the position of the block m. Since the block must move along the surface of the wedge, the displacement of m relative to M must "fit" the surface, as shown in the left figure below. Namely, the constraint of the motion is

$$
\tan \theta=\frac{y_{M}-y_{m}}{x_{m}-x_{M}}, \text { or } y_{M}-y_{m}=\left(x_{m}-x_{M}\right) \tan \theta .
$$

Differentiating the equation above with respect to time twice, and using the fact that $\ddot{x}_{M}=a, \ddot{y}_{M}=0$, we get $-\ddot{y}_{m}=\left(\ddot{x}_{m}-a\right) \tan \theta$. From the free body diagram below, we also have:

$$
N \sin \theta=m \ddot{x}_{m}, \text { and } N \cos \theta-m g=m \ddot{y}_{m} .
$$

Eliminating N from these two equations, and using $\theta=\pi / 4$, we solve for \ddot{x}_{m} and \ddot{y}_{m} :

$$
\ddot{x}_{m}=\frac{a+g}{2}, \ddot{y}_{m}=\frac{a-g}{2}
$$

4. See the free body diagram below. Since the car is climbing up a circle of radius R using the static friction force f_{s}, and at the same time rotating about the center with speed v, it follows that

$$
\begin{aligned}
N-m g \cos \theta & =\frac{m v^{2}}{R} \\
m g \sin \theta & =f_{s}
\end{aligned}
$$

Not falling means $N \geq 0$, and not slipping implies $f_{s} \leq \mu_{s} N$. Imposing these two conditions to the two equations above, we get

$$
\left\{\begin{array}{cc}
\cos \theta+\frac{v^{2}}{g R} \geq 0 \quad & \text { (not falling), } \\
\mu_{s} \geq \frac{\sin \theta}{\cos \theta+v^{2} / g R} & \quad \text { (not slipping), }
\end{array} \text { for all } \theta\right.
$$

Since $\cos \theta$ can be as negative as -1 (when $\theta=\pi$, i.e., at the top of the circle), to ensure the first inequality to hold, we must require $v \geq \sqrt{g R}$. (To ensure the second inequality to hold, we need both $v>\sqrt{g R}$, and $\mu_{s} \geq 1 / \sqrt{\left(v^{2} / g R\right)^{2}-1}$. But we don't need these results for the exam.)
(a) From the analysis above, the car has to move at a speed $v>v_{0}=\sqrt{g R}$ to not fall off from the track.
(b) If $v<v_{0}=\sqrt{g R}$, the car starts to slip when

$$
\mu_{s}=\frac{\sin \theta}{\cos \theta+v^{2} / g R} \text {. }
$$

5. (a) The mass M_{3} is pulling the rope connecting M_{2} and M_{3}, so both M_{2} and M_{3} have the same acceleration a. The equation of motion for M_{2} and M_{3} are $T=M_{2} a$ and $M_{3} g-T=M_{3} a$, respectively. Solving these two equations for a and T, we obtain

$$
a=\frac{M_{3} g}{M_{2}+M_{3}}, \text { and } T=\frac{M_{2} M_{3}}{M_{2}+M_{3}} g .
$$

In the free body diagram of M_{1} below, this tension T is pushing M_{1} to the left, so the force F has to oppose it to make M_{1} still:

$$
F=\frac{M_{2} M_{3} g}{M_{2}+M_{3}} .
$$

(b) The tension T has to balance M_{3} in the vertical direction, so $T=M_{3} g$. But the same T also needs to pull M_{2} such that M_{2} has the same acceleration as the entire system, so $T=M_{2} a$. Hence $a=M_{3} g / M_{2}$. The force F that moves entire system $M_{1}+M_{2}+M_{3}$ with acceleration a should have magnitude

$$
F=\left(M_{1}+M_{2}+M_{3}\right) \frac{M_{3} g}{M_{2}} .
$$

(c) Assume M_{1} has acceleration $-a \hat{\mathbf{e}}_{x}$, and M_{2} has acceleration $a^{\prime} \hat{\mathbf{e}}_{x}$, both relative to ground. Then relative to M_{1}, the mass M_{2} has acceleration $\left(a^{\prime}+a\right) \hat{\mathbf{e}}_{x}$. Since the rope has fixed length, $a^{\prime}+a$ is also the downward acceleration of M_{3}. Therefore, we can write

$$
\begin{aligned}
T & =M_{2} a^{\prime} \\
M_{3} g-T & =M_{3}\left(a^{\prime}+a\right) .
\end{aligned}
$$

Eliminate a^{\prime}, we get $T=M_{2} M_{3}(g-a) /\left(M_{2}+M_{3}\right)$. This tension is pushing M_{1} and M_{3} (via the wall next to M_{3}) to the left with acceleration $-a \hat{\mathbf{e}}_{x}$, so

$$
\frac{M_{2} M_{3}}{M_{2}+M_{3}}(g-a)=\left(M_{1}+M_{3}\right) a .
$$

Solving this equation for a, it follows that

$$
a=\frac{\mu g}{1+\mu}, \text { where } \mu \equiv \frac{M_{2} M_{3}}{\left(M_{1}+M_{3}\right)\left(M_{2}+M_{3}\right)} .
$$

