Solutions to the Midterm Exam - Linear Algebra

Math 110, Fall 2019. Instructor: E. Frenkel
Problem 1. Let V be the subspace of $P_{2}(\mathbb{R})$ that consists of all polynomials $p(t)$ of degree less than or equal to 2 , such that

$$
\int_{0}^{1} p(t) d t=0 .
$$

Construct a basis β of V and prove that it is a basis.
Solution. Let $p(t)=a_{0}+a_{1} t+a_{2} t^{2}$. Then $\int_{0}^{1} p(t) d t=0$ means that $a_{0}+\frac{1}{2} a_{1}+\frac{1}{3} a_{2}=0$. We claim that

$$
\beta=\left\{1-2 t, 1-3 t^{2}\right\}
$$

is a basis of this subspace (of course, it's just one of many possibilities). To prove this, note that this subspace - denote it by V - is the null-space $N(T)$ of the linear transformation $T: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ sending $p(t)$ to $\int_{0}^{1} p(t) d t$. This linear transformation is onto, because $\int_{0}^{1} c d t=c$ for any $c \in \mathbb{R}$. Hence $R(T)=\mathbb{R}$, and by Dimension Theorem, $\operatorname{dim} V=3-1=2$. Since β consists of two elements, in order to prove that β is a basis of V, it is sufficient to prove that β is linearly independent. Clearly, any non-zero scalar multiple of $(1-2 t)$ is a polynomial of degree 1 , so it cannot be equal to $\left(1-3 t^{2}\right)$ which is a polynomial of degree 2. Therefore β is β is indeed linearly independent; hence a basis of V.

Problem 2. Let $M \in M_{n \times n}(F)$, where F is a field, be an upper triangular matrix with non-zero diagonal entries. Prove that the columns of M form a basis of F^{n}.

Solution. This was explained in detail during a lecture, and there was also a closely related homework problem.

We know that $\operatorname{dim} F^{n}=n$ (because it has a canonical basis with n elements). Since we have a set of n columns of M, if we prove that this set is linearly independent, then it will follow that it is a basis of F^{n}.

Denote the i th column by v_{i}. Suppose that we have a linear relation

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} v_{i}=\underline{0}, \quad a_{i} \in F . \tag{1}
\end{equation*}
$$

Suppose that at least one of the a_{i} is non-zero. Let j be the maximal integer from 1 to n such that $a_{j} \neq 0$. Then the j th entry of the LHS of (1) is equal to $a_{j} \cdot v_{j j}$, where $v_{j j}$ is the j th entry of v_{j}, which is the diagonal entry $M_{j j}$ of M. Since the diagonal entries of M are non-zero, we have $v_{j j} \neq 0$. We have assumed that $a_{j} \neq 0$. Hence $a_{j} \cdot v_{j j} \neq 0$, which means that the equation (1) cannot be satisfied. This is a contradiction. Hence all a_{i} are equal to 0 , and the set $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent. Therefore it is a basis of F^{n}.

Problem 3. Let $T: P_{3}(\mathbb{C}) \rightarrow P_{2}(\mathbb{C})$ be defined by the formula $T(p(t))=2 p^{\prime}(t)-3 p^{\prime \prime}(t)$.
Consider $P_{3}(\mathbb{C})$ and $P_{2}(\mathbb{C})$ as vector spaces over \mathbb{C}. Prove that T is a linear transformation between them and compute its matrix $[T]_{\beta}^{\gamma}$, where β is the standard monomial basis and $\gamma=\left\{1, t-1, t^{2}-1\right\}$.

Solution. We find

$$
\begin{gathered}
T(1)=0, \quad T(t)=2 \cdot 1, \quad T\left(t^{2}\right)=4 t-6=(-2) \cdot 1+4 \cdot(t-1), \\
T\left(t^{3}\right)=6 t^{2}-18 t=(-12) \cdot 1+6 \cdot\left(t^{2}-1\right)-18 \cdot(t-1)
\end{gathered}
$$

Thus,

$$
[T]_{\beta}^{\gamma}=\left(\begin{array}{cccc}
0 & 2 & -2 & -12 \\
0 & 0 & 4 & -18 \\
0 & 0 & 0 & 6
\end{array}\right)
$$

Problem 4. Let V be a two-dimensional vector space over \mathbb{R} and $T: V \rightarrow V$ a linear transformation. Suppose that $\beta=\left\{x_{1}, x_{2}\right\}$ and $\gamma=\left\{y_{1}, y_{2}\right\}$ are two bases in V such that

$$
y_{1}=x_{1}+x_{2}, \quad y_{2}=x_{1}+2 x_{2} .
$$

Find $[T]_{\beta}$ if

$$
[T]_{\gamma}=\left(\begin{array}{cc}
2 & -1 \\
3 & 1
\end{array}\right)
$$

Solution. We have

$$
[T]_{\gamma}=Q^{-1}[T]_{\beta} Q
$$

where

$$
Q=\left(\left[y_{1}\right]_{\beta}\left[y_{2}\right]_{\beta}\right)=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

It is easy to compute that

$$
Q^{-1}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right)
$$

Therefore

$$
[T]_{\beta}=Q[T]_{\gamma} Q^{-1}=\left(\begin{array}{cc}
10 & -5 \\
15 & -7
\end{array}\right)
$$

Problem 5. Let $P_{n}^{k}(\mathbb{R})$ be the set of real polynomials $p(t)$ in one variable of degree less than or equal to n and such that the values of $p(t)$ at $t=1,2, \ldots, k$ are all equal to 0 , i.e. $p(1)=p(2)=\ldots=p(k)=0$. Assume that $0<k \leq n$. Prove that $P_{n}^{k}(\mathbb{R})$ is a vector space over \mathbb{R}, and prove that the dimension of $P_{n}^{k}(\mathbb{R})$ is $n-k+1$.

Solution. First, let's prove that $P_{n}^{k}(\mathbb{R})$ is a subspace of $P_{n}(\mathbb{R})$. By a theorem from the book, it is sufficient to show that $P_{n}^{k}(\mathbb{R})$ is closed under addition and scalar multiplication and that the zero polynomial is an element of $P_{n}^{k}(\mathbb{R})$. All three properties are clear. So $P_{n}^{k}(\mathbb{R})$ is a subspace of $P_{n}(\mathbb{R})$ and hence it is a vector space.

Now we compute the dimension of $P_{n}^{k}(\mathbb{R})$.
First computation. It is known from high school algebra that every polynomial $p(t)$ that vanishes at c_{1}, \ldots, c_{k} has the form $p(t)=q(t) \prod_{i=1}^{k}\left(t-c_{i}\right)$, where $q(t)$ is another polynomial. Therefore every $p(t) \in P_{n}^{k}(\mathbb{R})$ has the form $q(t) \prod_{i=1}^{k}(t-i)$, where $q(t) \in P_{n-k}(\mathbb{R})$. Define a map $U: P_{k}(\mathbb{R}) \rightarrow P_{n}^{k}(\mathbb{R})$ sending $q(t)$ to $q(t) \prod_{i=1}^{k}(t-i)$. It is clear from the definition
that U is a linear transformation, and furthermore, an isomorphism. Hence $\operatorname{dim} P_{n}^{k}(\mathbb{R})=$ $\operatorname{dim} P_{n-k}(\mathbb{R})=n-k+1$.

Second computation. Consider the map $T: P_{n}(\mathbb{R}) \rightarrow \mathbb{R}^{k}$ sending

$$
p(t) \mapsto\left(\begin{array}{c}
p(1) \\
p(2) \\
\ldots \\
p(k)
\end{array}\right)
$$

This is a linear transformation because the value of $c p(t)+q(t)$ at m is $c p(m)+q(m)$. Clearly, $N(T)=P_{n}^{k}(\mathbb{R})$, and we know that $\operatorname{dim} P_{n}(\mathbb{R})=n+1$. Hence, by Dimension Theorem, $\operatorname{dim} P_{n}^{k}(\mathbb{R})=(n+1)-\operatorname{dim} R(T)$. To prove that that the dimension of $P_{n}^{k}(\mathbb{R})$ is $n-k+1$, we therefore need to prove that T is onto.

This follows from the statement of homework problem 2.6.10(b): there exist polynomials $p_{i}(t), i=1, \ldots, n+1$, such that $p_{i}(j)=\delta_{i, j}$ for all $j=1, \ldots, n+1$. This means that

$$
T\left(\sum_{i=1}^{k} a_{i} p_{i}(t)\right)=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\ldots \\
a_{k}
\end{array}\right), \quad \forall a_{1}, \ldots, a_{k} \in \mathbb{R}
$$

Problem 6. Consider the vector space $W=\left\{p(t)=a+b t^{2} \mid a, b \in \mathbb{R}\right\}$. Let f_{1} and f_{2} be the linear functionals on W, such that $f_{1}[p(t)]=p(1)$, and $f_{2}[p(t)]=p(2)$.

Find the basis of W for which $\left\{f_{1}, f_{2}\right\}$ is the dual basis.
Solution is similar to the solution of the homework problem 2.6.5 (which was explained during a lecture) and Example 4 of Section 2.6.

Problem 7. Let A and B be two $n \times n$ matrices such that $A B=I_{n}$. Prove that then necessarily $B A=I_{n}$ as well.

Solution. This was explained in detail during a lecture, and this was the homework problem 2.4.10. Let L_{A} (resp. L_{B}) be the linear transformation $F^{n} \rightarrow F^{n}$ sending $v \mapsto A v$ (resp. $B v$). Then L_{A} (resp. L_{B}) is invertible if and only if A (resp. B) is invertible. Furthermore, $A B=I_{n}$ implies that $L_{A} \circ L_{B}=I_{F^{n}}$, hence invertible. But then $N\left(L_{B}\right)=$ $\{\underline{0}\}$, for otherwise there is $v \neq \underline{0}$ such that $L_{B}(v)=\underline{0}$, and then $L_{A} \circ L_{B}(v)=L_{A}\left(L_{B}(v)\right)=$ $L_{A}(\underline{0})=\underline{0}$, which contradicts $L_{A} \circ L_{B}$ being invertible. Since $N\left(L_{B}\right)=\{\underline{0}\}, L_{B}$ is one-to one. By the Dimension Theorem, $\operatorname{dim} R\left(L_{B}\right)=n$ and so L_{B} is also onto. Thus, L_{B} is invertible. Hence there exists a matrix C such that $C B=B C=I_{n}$. Now, multiplying both sides of $A B=I_{n}$ on the right by C we find that $(A B) C=C$, hence $A=A I_{n}=$ $A(B C)=(A B) C=C$, and then $B C=I_{n}$ implies $B A=I_{n}$.

Remark. Note that it is necessary to prove first that B is invertible, i.e. there exists a matrix C such that $C B=B C=I_{n}$. Otherwise, there is no such thing as B^{-1}. Alternatively, one can prove that A is invertible and then use A^{-1} in a similar way. Otherwise,
there is no such thing as A^{-1}. So, without either of these arguments, we cannot use A^{-1} or B^{-1}.

Recall that a matrix A is called invertible if $A B=I_{n}$ and $B A=I_{n}$. Formula $A B=I_{n}$ alone does not guarantee that A or B is invertible. For this reason, any solution to this problem in which the existence of A^{-1} or B^{-1} was taken for granted was given 0 points.

Alternative solution. Multiplying both sides of $A B=I_{n}$ on the left by B, we get $B A B=B$. Hence $\left(B A-I_{n}\right) B=0$. Next, we prove (as above) that B is invertible. Then we claim that $B A-I_{n}=0$, or equivalently, $\left(B A-I_{n}\right) x=0$ for all $x \in F^{n}$. Indeed, since B is invertible, there exists $y \in F^{n}$ such that $x=B y$. Hence $\left(B A-I_{n}\right) x=\left(B A-I_{n}\right) B \cdot y=$ $0 \cdot y=\underline{0}$. Thus, $B A-I_{n}=0$, and so $B A=I_{n}$.

Remark. A number of students claimed that $\left(B A-I_{n}\right) B=0$ implies $B A-I_{n}$. But this only follows if we prove first that B is invertible (see above). Note that if we have two $n \times n$ matrices X and Y, with $n>1$, then $X Y=0$ does not imply that $X=0$ or $Y=0$.

