
Solutions to the Midterm Exam – Linear Algebra

Math 110, Fall 2019. Instructor: E. Frenkel

Problem 1. Let V be the subspace of P2(R) that consists of all polynomials p(t) of degree
less than or equal to 2, such that ∫ 1

0

p(t)dt = 0.

Construct a basis β of V and prove that it is a basis.

Solution. Let p(t) = a0 + a1t+ a2t
2. Then

∫ 1

0
p(t)dt = 0 means that a0 + 1

2
a1 + 1

3
a2 = 0.

We claim that
β = {1− 2t, 1− 3t2}

is a basis of this subspace (of course, it’s just one of many possibilities). To prove this, note
that this subspace – denote it by V – is the null-space N(T ) of the linear transformation

T : P2(R) → R sending p(t) to
∫ 1

0
p(t)dt. This linear transformation is onto, because∫ 1

0
cdt = c for any c ∈ R. Hence R(T ) = R, and by Dimension Theorem, dimV = 3−1 = 2.

Since β consists of two elements, in order to prove that β is a basis of V , it is sufficient to
prove that β is linearly independent. Clearly, any non-zero scalar multiple of (1− 2t) is a
polynomial of degree 1, so it cannot be equal to (1− 3t2) which is a polynomial of degree
2. Therefore β is β is indeed linearly independent; hence a basis of V .

Problem 2. Let M ∈ Mn×n(F ), where F is a field, be an upper triangular matrix with
non-zero diagonal entries. Prove that the columns of M form a basis of F n.

Solution. This was explained in detail during a lecture, and there was also a closely
related homework problem.

We know that dimF n = n (because it has a canonical basis with n elements). Since we
have a set of n columns of M , if we prove that this set is linearly independent, then it will
follow that it is a basis of F n.

Denote the ith column by vi. Suppose that we have a linear relation

(1)
n∑
i=1

aivi = 0, ai ∈ F.

Suppose that at least one of the ai is non-zero. Let j be the maximal integer from 1 to n
such that aj 6= 0. Then the jth entry of the LHS of (1) is equal to aj · vjj, where vjj is the
jth entry of vj, which is the diagonal entry Mjj of M . Since the diagonal entries of M are
non-zero, we have vjj 6= 0. We have assumed that aj 6= 0. Hence aj · vjj 6= 0, which means
that the equation (1) cannot be satisfied. This is a contradiction. Hence all ai are equal to
0, and the set {v1, . . . , vn} is linearly independent. Therefore it is a basis of F n.

Problem 3. Let T : P3(C)→ P2(C) be defined by the formula T (p(t)) = 2p′(t)− 3p′′(t).

Consider P3(C) and P2(C) as vector spaces over C. Prove that T is a linear transforma-
tion between them and compute its matrix [T ]γβ, where β is the standard monomial basis

and γ = {1, t− 1, t2 − 1}.
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Solution. We find

T (1) = 0, T (t) = 2 · 1, T (t2) = 4t− 6 = (−2) · 1 + 4 · (t− 1),

T (t3) = 6t2 − 18t = (−12) · 1 + 6 · (t2 − 1)− 18 · (t− 1)

Thus,

[T ]γβ =

0 2 −2 −12
0 0 4 −18
0 0 0 6


Problem 4. Let V be a two-dimensional vector space over R and T : V → V a linear
transformation. Suppose that β = {x1, x2} and γ = {y1, y2} are two bases in V such that

y1 = x1 + x2, y2 = x1 + 2x2.

Find [T ]β if

[T ]γ =

(
2 −1
3 1

)
Solution. We have

[T ]γ = Q−1[T ]βQ,

where

Q =
(
[y1]β[y2]β

)
=

(
1 1
1 2

)
It is easy to compute that

Q−1 =

(
2 −1
−1 1

)
Therefore

[T ]β = Q[T ]γQ
−1 =

(
10 −5
15 −7

)
Problem 5. Let P k

n (R) be the set of real polynomials p(t) in one variable of degree less
than or equal to n and such that the values of p(t) at t = 1, 2, . . . , k are all equal to 0, i.e.
p(1) = p(2) = . . . = p(k) = 0. Assume that 0 < k ≤ n. Prove that P k

n (R) is a vector space
over R, and prove that the dimension of P k

n (R) is n− k + 1.

Solution. First, let’s prove that P k
n (R) is a subspace of Pn(R). By a theorem from the

book, it is sufficient to show that P k
n (R) is closed under addition and scalar multiplication

and that the zero polynomial is an element of P k
n (R). All three properties are clear. So

P k
n (R) is a subspace of Pn(R) and hence it is a vector space.

Now we compute the dimension of P k
n (R).

First computation. It is known from high school algebra that every polynomial p(t) that

vanishes at c1, . . . , ck has the form p(t) = q(t)
∏k

i=1(t−ci), where q(t) is another polynomial.

Therefore every p(t) ∈ P k
n (R) has the form q(t)

∏k
i=1(t− i), where q(t) ∈ Pn−k(R). Define

a map U : Pk(R) → P k
n (R) sending q(t) to q(t)

∏k
i=1(t − i). It is clear from the definition



3

that U is a linear transformation, and furthermore, an isomorphism. Hence dimP k
n (R) =

dimPn−k(R) = n− k + 1.

Second computation. Consider the map T : Pn(R)→ Rk sending

p(t) 7→


p(1)
p(2)
. . .
p(k)


This is a linear transformation because the value of cp(t) + q(t) at m is cp(m) + q(m).
Clearly, N(T ) = P k

n (R), and we know that dimPn(R) = n + 1. Hence, by Dimension
Theorem, dimP k

n (R) = (n+ 1)− dimR(T ). To prove that that the dimension of P k
n (R) is

n− k + 1, we therefore need to prove that T is onto.

This follows from the statement of homework problem 2.6.10(b): there exist polynomials
pi(t), i = 1, . . . , n+ 1, such that pi(j) = δi,j for all j = 1, . . . , n+ 1. This means that

T

(
k∑
i=1

aipi(t)

)
=


a1
a2
. . .
ak

 , ∀a1, . . . , ak ∈ R.

Problem 6. Consider the vector space W = {p(t) = a + bt2|a, b ∈ R}. Let f1 and f2 be
the linear functionals on W , such that f1[p(t)] = p(1), and f2[p(t)] = p(2).

Find the basis of W for which {f1, f2} is the dual basis.

Solution is similar to the solution of the homework problem 2.6.5 (which was explained
during a lecture) and Example 4 of Section 2.6.

Problem 7. Let A and B be two n × n matrices such that AB = In. Prove that then
necessarily BA = In as well.

Solution. This was explained in detail during a lecture, and this was the homework
problem 2.4.10. Let LA (resp. LB) be the linear transformation F n → F n sending v 7→ Av
(resp. Bv). Then LA (resp. LB) is invertible if and only if A (resp. B) is invertible.
Furthermore, AB = In implies that LA ◦ LB = IFn , hence invertible. But then N(LB) =
{0}, for otherwise there is v 6= 0 such that LB(v) = 0, and then LA ◦LB(v) = LA(LB(v)) =
LA(0) = 0, which contradicts LA ◦ LB being invertible. Since N(LB) = {0}, LB is one-to
one. By the Dimension Theorem, dimR(LB) = n and so LB is also onto. Thus, LB is
invertible. Hence there exists a matrix C such that CB = BC = In. Now, multiplying
both sides of AB = In on the right by C we find that (AB)C = C, hence A = AIn =
A(BC) = (AB)C = C, and then BC = In implies BA = In.

Remark. Note that it is necessary to prove first that B is invertible, i.e. there exists a
matrix C such that CB = BC = In. Otherwise, there is no such thing as B−1. Alterna-
tively, one can prove that A is invertible and then use A−1 in a similar way. Otherwise,
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there is no such thing as A−1. So, without either of these arguments, we cannot use A−1

or B−1.

Recall that a matrix A is called invertible if AB = In and BA = In. Formula AB = In
alone does not guarantee that A or B is invertible. For this reason, any solution to this
problem in which the existence of A−1 or B−1 was taken for granted was given 0 points.

Alternative solution. Multiplying both sides of AB = In on the left by B, we get
BAB = B. Hence (BA− In)B = 0. Next, we prove (as above) that B is invertible. Then
we claim that BA− In = 0, or equivalently, (BA− In)x = 0 for all x ∈ F n. Indeed, since B
is invertible, there exists y ∈ F n such that x = By. Hence (BA− In)x = (BA− In)B · y =
0 · y = 0. Thus, BA− In = 0, and so BA = In.

Remark. A number of students claimed that (BA − In)B = 0 implies BA − In. But
this only follows if we prove first that B is invertible (see above). Note that if we have two
n× n matrices X and Y , with n > 1, then XY = 0 does not imply that X = 0 or Y = 0.


