
U.C. Berkeley — CS170 : Algorithms Midterm 1 A
Lecturers: Prasad Raghavendra and Satish Rao September 30, 2019

Name:

SID:

Name and SID of student to your left:

Name and SID of student to your right:

Exam Room:

g Evans 60 g Kroeber 160 g Latimer 120 g North Gate 105g Pimentel 1 g Cory 293 g Soda 320 g Soda 380g Other

Assigned Seat:

Rules and Guidelines

• The exam has 16 pages, is out of 110 points, and will last 110 minutes.

• Answer all questions. Read them carefully first. Not all parts of a problem are weighted equally.

• Write your student ID number in the indicated area on each page.

• Be precise and concise.

• When there is a box for an answer, only the work in box provided will be graded.

• You may use the blank page on the back for scratch work, but it will not be graded. Box numerical
final answers.

• The problems do not necessarily follow the order of increasing difficulty. Avoid getting stuck on a
problem.

• Any algorithm covered in lecture can be used as a blackbox. Algorithms from homework need to be
accompanied by a proof or justification as specified in the problem.

• You may assume that comparison of integers or real numbers, and addition, subtraction, multiplica-
tion and division of integers or real or complex numbers, require O(1) time.

• There are warmup questions on the back page of the exam for while you wait.

• Good luck!

Midterm 1 P. Raghavendra & S. Rao

This page is deliberately blank. You may use it to report cheating incidents. Otherwise, we will not look at
it.

2

SID: Midterm 1 P. Raghavendra & S. Rao

Discussion Section

Which of these do you consider to be your primary discussion section(s)? Feel free to choose multiple, or
to select the last option if you do not attend a section. Please color the checkbox completely. Do not just
tick or cross the boxes.

� Arpita, Thursday 9 - 10 am, Dwinelle 223

� Avni, Thursday 10 - 11 am, Dwinelle 215

� Emaan, Thursday 10 - 11 am, Etcheverry 3107

� Lynn, Thursday 11 - 12 pm, Barrows 118

� Dee, Thursday 11 - 12 pm, Wheeler 30

� Max, Thursday 12 - 1 pm, Wheeler 220

� Sean, Thursday 1 - 2 pm, Etcheverry 3105

� Jiazheng, Thursday 1 - 2 pm, Barrows 175

� Neha, Thursday 2 - 3 pm, Dwinelle 242

� Julia, Thursday 2 - 3 pm, Etcheverry 3105

� Henry, Thursday 3 - 4 pm, Haviland 12

� Kedar, Thursday 3 - 4 pm, Barrows 104

� Ajay, Thursday 4 - 5 pm, Barrows 136

� Varun, Thursday 4 - 5 pm, Dwinelle 242

� Gillian, Friday 9 - 10 am, Dwinelle 79

� Hermish, Friday 10 - 11 am, Evans 9

� Vishnu, Friday 11 - 12 pm, Wheeler 222

� Carlo, Friday 11 - 12 pm, Dwinelle 109

� Tarun, Friday 12 - 1 pm, Hildebrand B56

� Noah, Friday 12 - 1 pm, Hildebrand B51

� Teddy, Friday 1 - 2 pm, Dwinelle 105

� Jialin, Friday 1 - 2 pm, Wheeler 30

� Claire, Friday 2 - 3 pm, Barrows 155

� Jierui, Friday 2 - 3 pm, Wheeler 202

� David, Friday 2 - 3 pm, Wheeler 130

� Nate, Friday 2 - 3 pm, Evans 9

� Rishi, Friday 3 - 4 pm, Dwinelle 243

� Tiffany, Friday 3 - 4 pm, Barrows 104

� Ida, Friday 3 - 4 pm, Dwinelle 109

� Don’t attend Section.

3

Midterm 1 P. Raghavendra & S. Rao

1 Asymptotics. (11 points.)

1. (5 points, 1 point each.) For each row, select the most specific asymptotic statement(s).

f (n) g(n) f (n) = O(g(n)) f (n) = Ω(g(n)) f (n) = Θ(g(n))

n2 1000n + log n
i x i

2log n 210 log n x i i
2n 22log n i i x
n3 nlog2 7 i x i
n! nn x i i

For 2n vs 22log n
, we also accepted all the bubbles filled in, as the base of the log was not given.

2. (3 points) Consider the following statement: For f (n), g(n) > 0, if log f (n) = O(log g(n)), then
f (n) = O(g(n)). Either prove the statement, or give a counterexample with justification.

Consider f (n) = n2 and g(n) = n. Then log f (n) = 2n and log g(n) = n. As big-O ignores constants,
f (n) = O(g(n)). However, f (n) 6= O(g(n)) as the degree of f (n) is strictly greater than that of g(n)

3. (3 points) Give a formal proof that n = Ω(log n).

We have by L’Hôpital’s Rule:

lim
n→∞

n
log n

= lim
n→∞

n = ∞

Therefore, by limit rules for asymptotics, n = Ω(log n).

2 Recurrences. (13 points.)

Please give the tightest big O bound that you can.

1. T(n) = 9T(n/3) + O(n3)

O(n3). There are 9log3 n = n2 leaves and the work at the root is O(n3).

2. T(n) = 9T(n/3) + O(n2)

O(n2 log n). Here the work at every level is O(n2).

3. T(n) = 4T(n− 2) + O(2n)

O(n2n) . There are 4` problems which take 2n−2` time at depth i, for total work of 2n per level. There
are n− 2 levels.

4

SID: Midterm 1 P. Raghavendra & S. Rao

4. T(n) = T(n/3) + T(2n/3) + O(n)

O(n log n). We love O(n log n).

One can verify this using substitution. Here we make the constant in the O(n) explicit:

T(n) ≤ T(n/3) + T(2n/3) + cn.

Then we show inductively that there is a c′ where T(n) ≤ c′n log n as follows.

T(n) ≤ c′(n/3 log(n/3)) + c′(2n/3) log(2n/3) + cn

≤ c′(n/3 log(2n/3)) + c′(2n/3) log(2n/3) + cn

≤ c′n log(2n/3) + cn

≤ c′n log(n)− c′n log(3/2) + cn

Choosing c′ > c/ log 3/2 will ensure we satisfy the equation above.

5. T(n) = 3T(n1/3) + O(log n)

O(log n log log n).

Substitute x = log n

T(x) = 3T(x/3) + O(x).

Here, it is easy to see this is O(x log x).

3 Update, here, there, not quite everywhere. (6 points.)

Consider the graph below with the edge weights as indicated.

S A B C D E F

1

4

2

1

−4

2

1
2 2 −1 2

2

1. Give the shortest path distances to each vertex from S. (Be sure to notice all edges are directed from
left to right, except the arc from D to A which is directed from right to left.)

5

Midterm 1 P. Raghavendra & S. Rao

S: 0 A: -1 B: 1 C: 1

D: -3 E: -2 F: -1

2. Give a sequence of 6 edge updates that starting from d(S) = 0, and d(X) = ∞ for all X 6= S, produces
a valid set of shortest path distances. (We give you the first one.)

Update 1: (S, B) Update 2: (B, D)

Update 3: (D, A) Update 4: (D, E)

Update 5: (D, F) Update 6: (A, C)

4 Short answers and True/False. (38 points. 2 points each part.)

1. Let ωn be the nth primitive root of unity in the complex numbers. We let u∗ be the vector where each
complex number is replaced by its complex conjugate.

Recall for a complex number a = reiθ , its conjugate is a∗ = re−iθ . Notice that aa∗ = r2e0 = r2.

Let u = (1, ωn, ω2
n, . . . , ωn−1

n) and v = (1, ω2
n, ω4

n, . . . , ω
2(n−1)
n).

(a) What is u · u∗? (Recall x · y for vectors x and y is ∑i xiyi.)

n. Each complex number has magnitude 1, and the magnitude squared for a complex number
by multiplying by its conjugate complex number.

(b) What is u · v∗? (Recall u∗ is the vector of conjugates of the elements of u)

0. The dot product is

∑
i
(ω3

n)
i.

This can be seen to be zero (as in your homework) by using the formula for a geometric sum

n−1

∑
i

ri =
1− rn

/
1− r

and we use 1− (ω3
n)

n = 1− (ωn
n)

3 = 1− 13 = 0.

2. Recall that ωn is a primitive nth root of unity. That is, ωn = e2πi/n.

Let n = 2k. What is the smallest t > 0 where (ω4
n)

t = 1?

(Answer is an expression possibly using n and k.)

2k−2 as ((ωn)4)2k/4 = 1. And XXX it is primitive since...

3. We wish to evaluate A(x) = a0 + a1x + a2x2 + a3x3 for x ∈ {1, 2, 3, 4} as follows. (Fill in the blanks so
that the matrix computes the evaluations of A(x))

6

SID: Midterm 1 P. Raghavendra & S. Rao

a0

a1

a2

a3

=

A(1)

A(2)

A(3)

A(4)

1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64

4. For a DFS postordering for a directed graph, G = (V, E), for every edge (u, v) ∈ E, post(u) > post(v).

False. A back edge has post(u) < post(v) as it points to an ancestor v where explore(v) completes
after the explore(u) and thus has a larger post order number.

5. For an undirected graph, if there is a vertex of degree at least 3 in a DFS tree, removing that vertex
disconnects the graph.

False. Consider the graph, start depth first search from A, and explore B next.

A

B

C

D

6. For every graph with a Hamiltonian cycle (a simple cycle which contains every vertex), depth first
search could produce a tree of depth n− 1.

True. Order the edges in the Hamiltonian cycle first in each vertice’s adjacency list where DFS explores
the edges in order of adjacency list. The cycle will be explored first.

7. For a DAG with a single source s (a vertex with no incoming edges), all vertices are reachable from s.

True. You did this on homework! Topologically sort the vertices. Inductively, each prefix is reachable
from the source. The base case is that the source is reachable from the source, for each subsequent
vertex its incoming edge comes from previously reachable (from the source) vertices.

8. For any depth first search of a DAG, the vertex with the lowest post-order number is a sink.

True.

The inverse post-order number is a topological sort, thus the lowest post ordered number vertex is a
sink.

9. If there is a unique minimum weight edge in an undirected connected weighted graph, then it must
be in every minimum spanning tree.

True. If not, there is a cut that contains it and another edge, and exchanging the two edges would
decrease the cost of the supposedly optimal tree.

7

Midterm 1 P. Raghavendra & S. Rao

10. If a weighted undirected connected graph remains connected after removing all edges with weight
greater than w, then every edge in any MST has weight at most w.

True. Any edge e of weight greater than w in a supposedly minimum spanning tree T can be removed
and the connected components of T− e correspond to a cut which must at least one edge e′ of weight
at most w, replacing e with e′ produces a smaller weight tree. This is a contradiction.

11. For every weighted graph G = (V, E) and cut (S, V− S), there is an MST which contains all minimum
weight edges across that cut.

False. Consider a square where the top and bottom edge are 1, and the left and right edges are 2.

12. Given a graph, G = ({1, . . . , n}, E), where n > 3, and E contains the edges (1, 2), (2, 3) and (1, 3) with
edge weights 1, 1, and 2 respectively:

(a) Which, if any, of the edges (1, 2), (2, 3), (1, 3) must be in every MST?
(Give the edge(s) or state None.)

None. The graph could be connected by other edges.

(b) Which, if any, of the edges (1, 2), (2, 3), (1, 3) cannot be in any MST?
(Give the edge(s) or state None.)

(1, 3). The heaviest edge on a cycle is not on a cut, since in any tree at least one lighter edge on
the cyle is not in the tree, and one can replace the heavy edge with the light edge to produce a
cheaper tree.

13. Recall Bellman-Ford on a graph G = (V, E) from a source s initializes d(s) to 0 and d(v) = ∞ for all
other vertices v. Then, it updates all the edges |V| − 1 times.

(a) If there are at most k negative length edges in G, then updating all edges k times is sufficient to
compute all shortest path distances from s.

False. Consider a path of length 2k with no negative arcs, the distance label of the end of the path
may remain ∞.

(b) If every shortest path from s to any vertex uses at most k edges,then updating all edges k times
is sufficient to compute shortest path distances from s.

True. The induction for Bellman-Ford says after t iterations the distance label to each vertex is at
most the distance of any path that uses at most t edges.

14. Consider an undirected graph G with vertices {A, B, C, D, E, F, H}, where a breadth first search com-
putes the following distances:

[A : 0], [B : 1], [C : 1], [D : 1], [E : 2], [F : 2], [H : 3].

(a) There cannot be an edge (B, H) in G.

True. Otherwise d(A, F) ≤ d(A, B) + 1 = 2.

(b) Identify an edge that must exist G.

(A, B) or (A, C) or (A, D). Any distance 1 vertex must be directly connected to the source A.

(c) Identify the smallest set of vertices that is guaranteed to be a vertex cut. (Recall from homework,
a vertex cut is a set of vertices whose removal leaves a disconnected graph.)

E, F. There is no edge from A to H when removing these vertices as otherwise H’s distance label
would be 1. Similarly, there are no edges from B, C, D to H otherwise H’s distance would be 2

8

SID: Midterm 1 P. Raghavendra & S. Rao

5 Polynomial Multiplication/Applications. (8 points. 2/2/4 points by
part.)

1. Given that A(x) = a0 + a1x + a2x2 and B(x) = b0 + b1x + b2x2, what is the coefficient of x2 in A(x)×
B(x)? (In terms of a0, a1, a2, b0, b1 and b2.)

a0b2 + a1b1 + a2b0. The terms come from (a0 + a1x + a2x2 + . . .)(b0 + b1x + b2x2 + . . .).

2. Given A(x) = a0 + a1x + a2x2 + . . . anxn and B(x) = b0 + b1x + b2x2 . . . anxn, what is the coefficient
of xk in A(x)× B(x)? (In terms of a0, a1, . . . an and b0, . . . , bn.)

∑k
i=0 aibk−i. The terms in the sum come from products of the form aixk + bk−ixk−i = aibk−ixk.

3. Let A and B be independent random variables which take on values in [0, . . . , n− 1], where Pr[A =
k] = ak and Pr[B = k] = bk.

Briefly describe an O(n log n) time algorithm that, given a0, . . . , an−1 and b0, . . . , bn−1, computes the
probability mass function for A + B, i.e., computes Pr[A + B = k] for all relevant k.

(Hint: consider all the values of A and B where A + B = k.)

Note that by the total probability rule Pr(A + B = k) = ∑k
i=0 Pr(A = i, B = k− i) = ∑k

i=0 aibk−i.

Now let PA(x) = a0 + a1x + . . . + an−1xn−1, and PB(x) = b0 + b1x + . . . + bn−1xn−1, then see that the
coefficient for xk in PA · PB is ∑k

i=0 aibk−i.

Compute the polynomial multiplication using FFT, then return Pr(A + B = k) as the xk coefficient in
the result. This takes O(n log n) time as both polynomials have degree at most n− 1.

6 Divide and Conquer. (12 points. 6/6 per part.)

1. Given k sorted lists, each of length n, give an algorithm to produce a single sorted list containing the
elements of all the lists. The runtime should be O(kn log k).

Possible accepted solutions:

(a) Call the algorithm recursively on the first k/2 sorted lists, then on the second k/2 sorted lists.
Then merge them together (this takes kl/2 time). The recurrence is T(k) = 2T(k/2) +O(kn).
This gives time kn + 2(k/2)n + . . . + 2log k(k/2log k)n = O(kn log k).

(b) Do the k-way merge all at once. Keep a pointer to the start of each array. Add the smallest
element in each array to a heap.
Repeatedly pull the smallest item from the heap and increment the pointer of the array it came
from. Then add the destination of the pointer to the heap. Do this until the heap is empty and
all pointers point past their arrays.
This is kn heap operations (delete, insert) on a heap of size at most k, giving time O(kn log k).

(c) Similar to the above, put the smallest elements from each array into a new k-length array A and
sort them. Keep a pointer to the start of each array.
Repeatedly pull the smallest element from A, increment the pointer it came from. Use binary
search to insert the destination of the pointer into the right place into A. Do this until the array
is empty and all pointers point past their arrays.
It is not obvious how to implement this, as you need an array with constant-time seek and insert
operations. If you use an amortized data-structure, you will get O(kn log k) as well.

9

Midterm 1 P. Raghavendra & S. Rao

It is not enough to merge the first two lists, then merge the result with the third, then the result with
the fourth, etc. This would give a k2 log n runtime.

2. In the MultipleSelect problem that given a set of n items and a set r of select requests k1, . . . , kr.

Consider the algorithm of finding a median element (using deterministic median finding) and recur-
sively computing MultipleSelect on each half with the appropriate requests.

Argue that this algorithm takes at most O(n log r) time.

(Note: if there are no requests in one of the halves, one does not need to make a recursive call on that
half.)

The algorithm as given in the problem computes the median (in O(n) time), then partitions the ele-
ments around the median, and the requests k1, . . . , kr around n/2.

After log(2r) = O(log r) recursive calls, we have partitioned the original array into 2r pieces with
n/2r elements each. As there are only r requests, at most half of these pieces have a relevant request.
The algorithm will only need to recurse into these pieces, so we have essentially halved the size of the
problem.

At an arbitrary level i, the amount of work done is 2i · n/2i = n (to split each of the 2i partitions
around their medians). The amount of work done is O(n) at each level, and there are O(log r) levels,
so the total amount of work to get to this point is O(n log r).

This gives us the recurrence T(n) = T(n/2) +O(n log r). This expands as a series log r(n + n/2 +
n/4 + . . .) = O(n log r).

Formal proof: The above argument is fine and was given full credit, the following is how we might
do it rigorously.

Let T(n, r) be the time to do r selects on n items. We know that T(n, 0) = 0 for all n. We show by
induction that T(n, r) ≤ c′ · n log r for some c′ > 0.

After log(2r) recursive calls, let ri count the number of requests remaining in the ith partition. Then
∑2r

i=1 ri = r. As the ri are non-negative integers, this means that at least n of them must be zero.

Assume T(n, r) ≤ c′ ·n log r for all integers smaller than n. We get the recurrence T(n, r) = ∑2r
i=1 T(n/2r, ri)+

O(n log r). Replace O(n log r) with ≤ d · n log r and use the fact that at least n of the ri are zero and
T(n, 0) = 0:

T(n, r) ≤
2r

∑
i=1

T
(n

2r
, ri

)
+ d · n log r

= ∑
i : ri>0

T
(n

2r
, ri

)
+ d · n log r

≤ ∑
i : ri>0

c · n
2r

log ri + d · n log r

≤ cn
2r

r log r + d · n log r

≤
(c

2
+ d
)

n log r

We need to pick c ≥ c
2 + d, so c ≥ 2d.

10

SID: Midterm 1 P. Raghavendra & S. Rao

7 Strongly connected components. (6 points.)

Recall, the strongly connected components algorithm on a graph G proceeds by running depth first search
on the reverse graph, GR, and then runs depth first search on G using inverse post order number.

Let G have vertices a, b, c, d, e, f , g, h. The table below illustrates the post order numbering of the first run,
and the post order numbering of the second run on G, using the inverse post ordering from the first run.

a b c d e f g h
post(GR) 16 8 4 11 9 10 15 14
post(G) 6 13 16 10 14 9 4 5

1. What are the strongly connected components (SCCs) of the graph?

2. What is the topological sort of the strongly connected components of the graph?

Here is a graph which yields the post orderings above. The boxed ones are for the second run.

A

B

E

C

D

F

G

H

(1, 16)(1, 6)

(7, 8)(12, 13)

(3, 4)(15, 16)

(2, 11)(7, 10)

(6, 9)(11, 14)

(5, 10)(8, 9)

(12, 15)(2, 3)

(13, 1 < 4)(4/5)

1. The components are {A, G, H}, {B, E}, {C}, {D, F}.
One gets these by noticing that A has the highest post order number in the first one, and noting that
G, H are explored by A since their post order numbers are lower in the second run. One can then go
to D and see that F is explored and so on.

2. The topological sort is {C}, {B, E}, {D, F}, {A, G, H}.
One can get a topological sort of the graph, by noticing that the highest post order number must be
in a source component in the final run of the DFS. This is true again after removing that source. Thus,
the highest post order number is in {C}, the next is E which is in {B, E}, next is {D, F} and so on.

11

Midterm 1 P. Raghavendra & S. Rao

8 Shortest Path: remove an edge. (10 points)

Consider an undirected graph G = (V, E) with non-negative edge weights. You are also given a shortest
path labelling, d(·), and a corresponding shortest path tree T .

Consider removing an edge (u, v) in T . Let S be the set of v’s descendants in T and E(S) be the set of edges
where at least one of the endpoints is in S.

Give an O(|E(S)| log |S|) algorithm to update the distance labels in d(·) to be the shortest path distances in
the resulting graph.

One can remove the parent edge and compute the descendants, S, of e in O(|S|) time using DFS on the tree
edges.

Notice the shortest path label of any vertex not in S is correct as the previous shortest path remains undis-
turbed by this edge removal and we have not created any new paths. Let’s say these vertices are D = V− S.

Thus, essentially we want to modify dijkstra’s so that we only update distances that could possibly change
in S.

So, we set d(u) = ∞ for each vertex u in S and then update all vertices that have a path through D to be the
min of the paths through D. To do this, we assign d(u) to be the min of d(x) + d(x, u) where x is a vertex in
D and u is a vertex in S. We then add all vertices u in S to the priority queue, with priority of d(u).

We then process these vertices in order of d(·) and update for all edges with both endpoints in S.

The correctness follows since the vertices in D have the correct label and we always start by pulling a
vertex u whose path go through D. Through induction on subsequent steps since paths can never get
smaller (because the edges are non-negative), we correctly compute new paths either go directly through
D, or paths that have been previously computed so go through D and vertices in S.

The initialization step will take E(S) time because we can scan through all edges in E(S) and update d(·)
accordingly. Then for dijkstra’s since we only run it on vertices in S, we get the runtime to be O((E(S)) +
|S|) log(|S|)). The dijkstra’s step dominates the initialization step and since E(S) ≥ |S|, we can drop
|S|log(|S|) and so the overall runtime is O(E(S)log(|S|)).

9 Points on a Line. (6 points.)

You are given a list L = [x1, x2, . . . , xn] of n points on the real line where n is even and x1 < x2 < . . . < xn.
Design a greedy algorithm that partitions L into n/2 pairs (ai, bi), i = 1, 2, . . . , n/2 to minimize:

n/2

∑
i=1
|ai − bi|

Algorithm is to repeatedly match the two smallest points.

This is correct as if the first pair (x1, x2) are not in a matching, than the points are are matched (x1, xi) and
(x2, xj) where xi, xj > x2.

Assuming xj > xi, we have the cost of the two pairs to be

(xi − x1) + (xj − x2) = (xi − x2) + (x2 − x1) + (xj − xi) + (xi − x2) = (xj − xi) + (x2 − x1) + 2(xi − x2).

12

SID: Midterm 1 P. Raghavendra & S. Rao

Matching (x1, x2) and (xj, xi) gives (x2 − x1) + (xj − xi) which is no bigger as 2(xi − x2) ≥ 0.

Here is a figure:

x1 x2 xi xj

We exchanged the upper edges with the lower ones.

If xi > xj, we have the cost of the two pairs as:

(xi − x1) + (xj − x2) = (xi − xj) + (xj − x2) + (x2 − x1) + (xj − x2) = (xi − xj) + (x2 − x1) + 2(xj − x2),

which again is at least as large as (x2 − x1) + (xi − xj) as

2(xj − x2).

x1 x2 xixj

Again, the exchange is the top edges with the bottom ones.

Thus, there is an optimal solution with the first two points paired.

Furthermore, then one can apply induction that the algorithm gives a correct solution on the n− 2 points
to conclude the argument.

13

	Asymptotics. (11 points.)
	Recurrences. (13 points.)
	Update, here, there, not quite everywhere. (6 points.)
	Short answers and True/False. (38 points. 2 points each part.)
	Polynomial Multiplication/Applications. (8 points. 2/2/4 points by part.)
	Divide and Conquer. (12 points. 6/6 per part.)
	Strongly connected components. (6 points.)
	Shortest Path: remove an edge. (10 points)
	Points on a Line. (6 points.)

