Name:

SID:

Name and SID of student to your left:

Name and SID of student to your right:

Exam Room:

- $_{\odot}~$ Evans 60 $_{\odot}~$ Kroeber 160 $_{\odot}~$ Latimer 120 $_{\odot}~$ North Gate 105
- $_{\odot}$ Pimentel 1 $_{\odot}$ Cory 293 $_{\odot}$ Soda 320 $_{\odot}$ Soda 380
- $_{\bigcirc}$ Other

Assigned Seat:

Rules and Guidelines

- The exam has 16 pages, is out of 110 points, and will last 110 minutes.
- Answer all questions. Read them carefully first. Not all parts of a problem are weighted equally.
- Write your student ID number in the indicated area on each page.
- Be precise and concise.
- When there is a box for an answer, **only the work in box provided will be graded**.
- You may use the blank page on the back for scratch work, but it will not be graded. Box numerical final answers.
- The problems do not necessarily follow the order of increasing difficulty. *Avoid getting stuck on a problem*.
- Any algorithm covered in lecture can be used as a blackbox. Algorithms from homework need to be accompanied by a proof or justification as specified in the problem.
- You may assume that comparison of integers or real numbers, and addition, subtraction, multiplication and division of integers or real or complex numbers, require O(1) time.
- There are warmup questions on the back page of the exam for while you wait.
- Good luck!

This page is deliberately blank. You may use it to report cheating incidents. Otherwise, we will not look at it.

Discussion Section

Which of these do you consider to be your primary discussion section(s)? Feel free to choose multiple, or to select the last option if you do not attend a section. Please color the checkbox completely. Do not just tick or cross the boxes.

- □ Arpita, Thursday 9 10 am, Dwinelle 223
- □ Avni, Thursday 10 11 am, Dwinelle 215
- □ Emaan, Thursday 10 11 am, Etcheverry 3107
- 🗆 Lynn, Thursday 11 12 pm, Barrows 118
- □ Dee, Thursday 11 12 pm, Wheeler 30
- □ Max, Thursday 12 1 pm, Wheeler 220
- □ Sean, Thursday 1 2 pm, Etcheverry 3105
- □ Jiazheng, Thursday 1 2 pm, Barrows 175
- 🗆 Neha, Thursday 2 3 pm, Dwinelle 242
- 🗆 Julia, Thursday 2 3 pm, Etcheverry 3105
- □ Henry, Thursday 3 4 pm, Haviland 12
- □ Kedar, Thursday 3 4 pm, Barrows 104
- 🗆 Ajay, Thursday 4 5 pm, Barrows 136
- □ Varun, Thursday 4 5 pm, Dwinelle 242
- □ Gillian, Friday 9 10 am, Dwinelle 79
- □ Hermish, Friday 10 11 am, Evans 9
- □ Vishnu, Friday 11 12 pm, Wheeler 222
- □ Carlo, Friday 11 12 pm, Dwinelle 109
- 🗆 Tarun, Friday 12 1 pm, Hildebrand B56
- □ Noah, Friday 12 1 pm, Hildebrand B51
- □ Teddy, Friday 1 2 pm, Dwinelle 105
- □ Jialin, Friday 1 2 pm, Wheeler 30
- 🗆 Claire, Friday 2 3 pm, Barrows 155
- □ Jierui, Friday 2 3 pm, Wheeler 202
- David, Friday 2 3 pm, Wheeler 130
- □ Nate, Friday 2 3 pm, Evans 9
- □ Rishi, Friday 3 4 pm, Dwinelle 243
- □ Tiffany, Friday 3 4 pm, Barrows 104
- □ Ida, Friday 3 4 pm, Dwinelle 109
- \Box Don't attend Section.

f(n)	g(n)	f(n) = O(g(n))	$f(n) = \Omega(g(n))$	$f(n) = \Theta(g(n))$
n ²	$1000n + \log n$	\bigcirc	\bigcirc	\bigcirc
n ³	$n^{\log_2 7}$	0	0	0
2 ^{log <i>n</i>}	$2^{10 \log n}$	0	0	0
2 ⁿ	$2^{2^{\log n}}$	0	0	0
<i>n</i> !	n ⁿ	0	0	0

1 Asymptotics. (11 points.)

1. (5 points, 1 point each.) For each row, select the most specific asymptotic statement(s).

2. (3 points) Consider the following statement: For f(n), g(n) > 0, if $\log f(n) = O(\log g(n))$, then f(n) = O(g(n)). Either prove the statement, or give a counterexample with justification.

3. (3 **points**) Give a formal proof that $n = \Omega(\log n)$.

2 Recurrences. (13 points.)

Please give the tightest big O bound that you can.

1.
$$T(n) = 9T(n/3) + O(n^3)$$

SID:

2. $T(n) = 9T(n/3) + O(n^2)$

3. $T(n) = 4T(n-2) + O(2^n)$

4. T(n) = T(n/3) + T(2n/3) + O(n)

3 Update, here, there, not quite everywhere. (6 points.)

Consider the graph below with the edge weights as indicated.

1. Give the shortest path distances to each vertex from *S*. (Be sure to notice all edges are directed from left to right, except the arc from *D* to *A* which is directed from right to left.)

2. Give a sequence of 6 edge updates that starting from d(S) = 0, and $d(X) = \infty$ for all $X \neq S$, produces a valid set of shortest path distances. (We give you the first one.)

4 Short answers and True/False. (38 points. 2 points each part.)

1. Let ω_n be the *n*th primitive root of unity in the complex numbers. We let u^* be the vector where each complex number is replaced by its complex conjugate.

Recall for a complex number $a = re^{i\theta}$, its conjugate is $a^* = re^{-i\theta}$. Notice that $aa^* = r^2e^0 = r^2$. Let $u = (1, \omega_n, \omega_n^2, \dots, \omega_n^{n-1})$ and $v = (1, \omega_n^2, \omega_n^4, \dots, \omega_n^{2(n-1)})$.

- (a) What is $u \cdot u^*$? (Recall $x \cdot y$ for vectors x and y is $\sum_i x_i y_i$.)
- (b) What is $u \cdot v^*$? (Recall u^* is the vector of conjugates of the elements of u)
- 2. Recall that ω_n is a primitive *n*th root of unity. That is, $\omega_n = e^{2\pi i/n}$. Let $n = 2^k$. What is the smallest t > 0 where $(\omega_n^4)^t = 1$? (Answer is an expression possibly using *n* and *k*.)
- 3. We wish to evaluate $A(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ for $x \in \{1, 2, 3, 4\}$ as follows. (Fill in the blanks so that the matrix computes the evaluations of A(x))

5. For an undirected graph, if there is a vertex of degree at least 3 in a DFS tree, removing that vertex disconnects the graph.

OFalse

⊖True

Midterm 1

- 6. For every graph with a Hamiltonian cycle (a simple cycle which contains every vertex), depth first search could produce a tree of depth n - 1.
- 7. For a DAG with a single source *s* (a vertex with no incoming edges), all vertices are reachable from *s*.
- 8. For any depth first search of a DAG, the vertex with the lowest post-order number is a sink.
- 9. If there is a unique minimum weight edge in an undirected connected weighted graph, then it must be in every minimum spanning tree.
- 10. If a weighted undirected connected graph remains connected after removing all edges with weight greater than *w*, then every edge in any MST has weight at most *w*.
- 11. For every weighted graph G = (V, E) and cut (S, V S), there is an MST which contains all minimum weight edges across that cut.
- 12. Given a graph, $G = (\{1, \dots, n\}, E)$, where n > 3, and E contains the edges (1, 2), (2, 3) and (1, 3) with edge weights 1, 1, and 2 respectively:
 - (a) Which, if any, of the edges (1,2), (2,3), (1,3) must be in every MST? (Give the edge(s) or state None.)
 - (b) Which, if any, of the edges (1,2), (2,3), (1,3) cannot be in any MST? (Give the edge(s) or state None.)

⊖ True

⊖True

⊖ True

○ False ⊖True

 \bigcirc False

○ False

○ False

13. Recall Bellman-Ford on a graph G = (V, E) from a source *s* initializes d(s) to 0 and $d(v) = \infty$ for all other vertices v. Then, it updates all the edges |V| - 1 times.

Midterm 1

- (a) If there are at most k negative length edges in G, then updating all edges k times is sufficient to compute all shortest path distances from *s*.
- (b) If every shortest path from *s* to any vertex uses at most *k* edges, then updating all edges *k* times is sufficient to compute shortest path distances from *s*.
- 14. Consider an undirected graph G with vertices $\{A, B, C, D, E, F, H\}$, where a br putes the following distances:

$$[A:0], [B:1], [C:1], [D:1], [E:2], [F:2], [H:3].$$

- (a) There cannot be an edge (B, H) in *G*.
- (b) Identify an edge that must exist *G*.
- (c) Identify the smallest set of vertices that is guaranteed to be a vertex cut. (Recall from homework, a vertex cut is a set of vertices whose removal leaves a disconnected graph.)

readth	first	search	com

○ False

○ False

⊖ True

⊖True

⊖ True ○ False

Midterm 1

5 Polynomial Multiplication/Applications. (8 points. 2/2/4 points by part.)

- 1. Given that $A(x) = a_0 + a_1x + a_2x^2$ and $B(x) = b_0 + b_1x + b_2x^2$, what is the coefficient of x^2 in $A(x) \times B(x)$? (In terms of a_0, a_1, a_2, b_0, b_1 and b_2 .)
- 2. Given $A(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n$ and $B(x) = b_0 + b_1x + b_2x^2 \dots + a_nx^n$, what is the coefficient of x^k in $A(x) \times B(x)$? (In terms of a_0, a_1, \dots, a_n and b_0, \dots, b_n .)
- 3. Let *A* and *B* be independent random variables which take on values in [0, ..., n-1], where $Pr[A = k] = a_k$ and $Pr[B = k] = b_k$.

Briefly describe an $O(n \log n)$ time algorithm that, given a_0, \ldots, a_{n-1} and b_0, \ldots, b_{n-1} , computes the probability mass function for A + B, i.e., computes Pr[A + B = k] for all relevant k. (Hint: consider all the values of A and B where A + B = k.)

6 Divide and Conquer. (12 points. 6/6 per part.)

1. Given *k* sorted lists, each of length *n*, give an algorithm to produce a single sorted list containing the elements of all the lists. The runtime should be $O(kn \log k)$.

Justify the runtime.

	 	_	_	 	_	_				_			 _			 _			_	_	_	 		_			_		 		_	_	_	 	 . –	
_	 	-		 	-			 	-	-	-	-	 	 		 . –	-	-	-	-		 	 -	_	 	. –	-	-	 	 		-	-	 	 . –	
-	 	-	_	 	-	_		 	_	-	-	-	 	 		 -	-	_	-	-	_	 	 -	_	 		_	-	 	 	_	_	-	 	 	
-	 	-		 	-			 _	_	_	_	-	 	 	_	 _	_	_	_	-		 	 -	_	 		-	-	 	 	_	_	-	 	 . –	
_	 	-	_	 	-		_	 		_	_	_	 	 _		 	_	_	_	_	_	 	 -	_	 		-	_	 	 	_	_	_	 	 . —	
_	 	_		 	_			 		_	_	_	 	 		 	_	_	_	_	_	 	 -	_	 		_	_	 	 		_	_	 	 . —	
_	 	-		 	_			 		_	_	-	 	 		 	_	-	_	-		 	 -		 		_	_	 	 _		_	_	 	 	

2. In the MultipleSelect problem that given a set of *n* items and a set *r* of select requests k_1, \ldots, k_r .

Consider the algorithm of finding a median element (using deterministic median finding) and recursively computing MultipleSelect on each half with the appropriate requests.

Argue that this algorithm takes at most $O(n \log r)$ time.

(Note: if there are no requests in one of the halves, one does not need to make a recursive call on that half.)

	 	 	 		 	 	_	_		 	_		 	_	 	_	_	 	_	_	 	_	 	_		 	_	 	
	 	 	 		 	 	_	_		 · _	-		 	-	 	_	-	 	_	-	 	_	 	-		 	-	 	
	 	 	 	-	 	 	_	_		 	-		 	_	 	_	_	 	_	-	 	_	 	-		 	_	 	
	 	 	 		 	 	_	_		 	_		 	_	 	_	_	 	_	_	 	_	 	_		 	_	 	
	 	 	 		 	 	_	_		 	-		 	-	 	_	-	 	_	_	 	_	 	_		 	-	 	
	 	 	 	-	 	 	_	_		 -	-		 	-	 	_	-	 	_	-	 	_	 	-		 	_	 	
	 	 	 		 	 	_	_		 · _	_		 	_	 	_	_	 	_	_	 	_	 	_		 	_	 	
	 	 	 	_	 	 _		_		 	_	_	 	_	 		_	 _		_	 		 	_	_	 		 	
	 	 	 	-	 	 	_	-		 	-		 	-	 	_	-	 	_	-	 	_	 	-		 	_	 	
	 	 	 		 	 	_			 	_		 	_	 	_	_	 	_	_	 	_	 	_		 	_	 	
	 	 	 		 	 				 	_		 	_	 		_	 	_	_	 	_	 	_		 	_	 	
	 	 	 		 	 	_			 	_		 	_	 	_	_	 	_	_	 	_	 	_		 	_	 	
	 	 	 		 	 				 ·	_		 	_	 		_	 	_	_	 		 	_		 	_	 	· _ ·
	 · _ ·	 	 		 	 				 ·	_		 	_	 		_	 		_	 		 	_		 		 	· _ ·
	 · _ ·	 	 		 	 				 ·			 · _		 		_	 		-	 	-	 			 		 	· _ ·
	 ·	 	 		 	 				 ·			 		 		_	 		-	 		 			 	-	 	· _ ·
	 ·	 	 	_ · ·	 	 				 · _			 		 	·	_	 		-	 	-	 		 	 		 	· _ ·
 	 ·	 	 	_ · ·	 	 	·		= =	 ·	-		 ·		 	·	_	 			 	·	 			 		 	· _ ·
	 ·	 	 	_ · ·	 	 			 	 ·		 	 · · · ·		 	·		 			 		 		·	 		 	· _ ·
	 ·	 	 	 	 	 			 	 ·		- · ·	 · · · ·		 		_	 		-	 		 			 		 	· _ · ·
·	 ·	 	 	_ · ·	 				 	 ·			 		 	·		 		-	 		 			 		 	· _ · ·

7 Strongly connected components. (6 points.)

Recall, the strongly connected components algorithm on a graph G proceeds by running depth first search on the reverse graph, G^R , and then runs depth first search on G using inverse post order number.

Let *G* have vertices *a*, *b*, *c*, *d*, *e*, *f*, *g*, *h*. The table below illustrates the post order numbering of the first run, and the post order numbering of the second run on *G*, using the inverse post ordering from the first run.

	а	b	С	d	e	f	g	h
$post(G^R)$	16	8	4	11	9	10	15	14
post(G)	6	13	16	10	14	9	4	5

1. What are the strongly connected components (SCCs) of the graph?

2. What is the topological sort of the strongly connected components of the graph?

8 Shortest Path: remove an edge. (10 points)

Consider an undirected graph G = (V, E) with non-negative edge weights. You are also given a shortest path labelling, $d(\cdot)$, and a corresponding shortest path tree T.

Consider removing an edge (u, v) in T. Let S be the set of v's descendants in T and E(S) be the set of edges where at least one of the endpoints is in S.

Give an $O(|E(S)| \log |S|)$ algorithm to update the distance labels in $d(\cdot)$ to be the shortest path distances in the resulting graph.

Justify the runtime.

9 Points on a Line. (6 points.)

You are given a list $L = [x_1, x_2, ..., x_n]$ of *n* points on the real line where *n* is even and $x_1 < x_2 < ... < x_n$. Design a greedy algorithm that partitions *L* into *n*/2 pairs (a_i, b_i) , i = 1, 2, ..., n/2 to minimize:

$$\sum_{i=1}^{n/2} |a_i - b_i|$$

Give a description of your algorithm.

Justify the **correctness** of your algorithm using an **exchange/swapping argument**.