#### CS 70 Discrete Mathematics and Probability Theory Summer 2019 James Hulett and Elizabeth Yang

Final

| PRINT your name:           |                 |           |          |          |          |
|----------------------------|-----------------|-----------|----------|----------|----------|
|                            | (Fin            |           |          |          | (Last)   |
| SIGN your name:            |                 |           |          |          |          |
|                            |                 |           |          |          |          |
| PRINT your student ID:     |                 |           |          |          |          |
| CIRCLE your exam room:     | VLSB 2050       | VLSB 2060 | Soda 320 | Soda 380 | Soda 405 |
|                            |                 |           |          |          |          |
| Name of the person sitting | to your left: _ |           |          |          |          |
|                            |                 |           |          |          |          |
| Name of the person sitting | to your right:  |           |          |          |          |

- We will not grade anything outside of the space provided for a problem unless we are clearly told in the space provided for the question to look elsewhere.
- We will not be collecting scratch paper. Write everything you want to be graded on the exam itself.
- For problems with answers modulo m, only answers between 0 and m-1 will receive full credit.
- Assume all graphs are undirected and have no self-loops or parallel edges unless otherwise specified.
- Assume independence means mutual independence unless otherwise noted.
- You may use binomial coefficients in your answers, unless the question otherwise specifies an answer form (e.g. fraction, decimal).
- Unless otherwise specified, you may use any variables from the problem in your answer.
- Unless otherwise specified, summations and integrals are not allowed in short answer boxes.
- You may consult three handwritten double-sided sheets of notes. Apart from that, you may not look at books, notes, etc. Calculators, phones, computers, and other electronics devices are prohibited.
- There are 22 pages (11 sheets) on the exam. Notify a proctor immediately if a page is missing.
- There are 10 questions on this exam, worth a total of 270 points.
- You may, without proof, use theorems and facts that were proven in the notes, lecture, discussion, or homework.
- You have 180 minutes.

Do not turn this page until your instructor tells you to do so.

CS 70, Summer 2019, Final 1

# 1 True/False [3 Points Each, 36 Total]

1 point for True/False marking, 2 points for justification.

For each statement, mark whether it is true or false and give a brief justification (maximum 1 sentence, must fit in box) in the adjacent box.

| (a) | $(\neg P$  | $Q \Longrightarrow \neg Q) \equiv$          | $\equiv (Q \Longrightarrow P)$                                                                                                                                                       |
|-----|------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |            | _                                           |                                                                                                                                                                                      |
|     | <u> </u>   | True                                        |                                                                                                                                                                                      |
|     | $\bigcirc$ | False                                       |                                                                                                                                                                                      |
| (b) | An         | irreducible M                               | Markov Chain with a self-loop must be aperiodic.                                                                                                                                     |
|     | _          |                                             |                                                                                                                                                                                      |
|     | $\bigcirc$ | True                                        |                                                                                                                                                                                      |
|     | $\bigcirc$ | False                                       |                                                                                                                                                                                      |
| (c) |            | pose that for $\mathbb{E}[XY] = \mathbb{E}$ | random variables $X$ and $Y$ , if $\mathbb{P}(X=x,Y=y)=\mathbb{P}(X=x)\mathbb{P}(Y=y)$ for all $x$ and $y$ . $\mathbb{E}[X]\mathbb{E}[Y]$ .                                          |
|     |            |                                             |                                                                                                                                                                                      |
|     | $\bigcirc$ | True                                        |                                                                                                                                                                                      |
|     | $\bigcirc$ | False                                       |                                                                                                                                                                                      |
| (d) |            | , , ,                                       | be a simple, connected, bipartite graph. If we create a Markov Chain with state space is to any neighbor of the current state with equal probability, the chain will be periodic.    |
|     | $\bigcirc$ | True                                        |                                                                                                                                                                                      |
|     | 0          | False                                       |                                                                                                                                                                                      |
| (e) | _          |                                             | ow <i>n</i> balls in <i>n</i> bins uniformly at random. Let <i>X</i> be the number of balls in bin 1 and ber of balls in bin 2. Then $\mathbb{E}[XY] > \mathbb{E}[X]\mathbb{E}[Y]$ . |
|     |            | True                                        |                                                                                                                                                                                      |
|     | $\bigcirc$ | False                                       |                                                                                                                                                                                      |
| (f) | Let        |                                             | b) and $Y \sim \text{Bin}(m, p)$ be independent. Then $X + Y \sim \text{Bin}(n + m, p)$ .                                                                                            |
|     |            |                                             |                                                                                                                                                                                      |
|     | $\bigcirc$ | True                                        |                                                                                                                                                                                      |
|     |            | False                                       |                                                                                                                                                                                      |

| (g) | Sup        | $\operatorname{pose} X$ has d | distribution given by $\mathbb{P}[X=1] = \mathbb{P}[X=-1] = \frac{1}{2}$ , and $Y = X^2$ . Then, $Cov(X,Y) = 0$ . |
|-----|------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------|
|     |            |                               |                                                                                                                   |
|     | $\bigcirc$ | True                          |                                                                                                                   |
|     | $\bigcirc$ | False                         |                                                                                                                   |
| (h) | Wor        | king over Gi                  | $F(7)$ , the polynomials $x^8 - 1$ and $(x+1)(x-1)$ are equivalent.                                               |
|     | _          |                               |                                                                                                                   |
|     | $\bigcirc$ | True                          |                                                                                                                   |
|     | $\bigcirc$ | False                         |                                                                                                                   |
| (i) | The        | re exists inte                | gers $a, b$ such that $39a + 15b = 7$ .                                                                           |
|     |            |                               |                                                                                                                   |
|     | $\bigcirc$ | True                          |                                                                                                                   |
|     | $\bigcirc$ | False                         |                                                                                                                   |
| (j) | If a       | problem A re                  | educes to the Halting Problem, then A is recognizable.                                                            |
|     |            |                               |                                                                                                                   |
|     | <u> </u>   | True                          |                                                                                                                   |
|     | $\bigcirc$ | False                         |                                                                                                                   |
| (k) | If A       | is uncountab                  | ble and $A - B$ is countable, then $B$ must be uncountable.                                                       |
|     |            |                               |                                                                                                                   |
|     | $\bigcirc$ | True                          |                                                                                                                   |
|     | $\bigcirc$ | False                         |                                                                                                                   |
| (1) | If th      | e public key                  | of an RSA scheme is $(N = 11 \cdot 13, e = 7)$ , $d = 41$ is a valid decryption key.                              |
|     | _          |                               |                                                                                                                   |
|     | $\bigcirc$ | True                          |                                                                                                                   |
|     | $\bigcirc$ | False                         |                                                                                                                   |

# $2\quad \text{Short Answer} \left[ 3 \text{ Points Each, } 87 \text{ Total} \right]$

| _ |          |     |
|---|----------|-----|
|   | $\alpha$ | -   |
|   | 199      | u - |
|   |          |     |

| (a)   |         | sider the propositional formula $[(\neg A) \land B] \lor [A \land C]$ . Write an equivalent formula that uses <b>only</b> $\lor \neg$ (ie, does not use $\land$ ).                                       |
|-------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |         |                                                                                                                                                                                                          |
|       |         |                                                                                                                                                                                                          |
| (b)   |         | be the set of all basketball players in the NBA, $C$ be the set of all coaches in the NBA, and $\mathbf{R}(c)$ e set of all players on the team that coach $c$ coaches. Define the following statements: |
|       | B(c, z) | (x,y): "Coach $c$ thinks player $x$ is <b>better</b> than or equal to player $y$ "                                                                                                                       |
|       | F(c,)   | x): "Coach c's <b>favorite</b> player on his own team is player x"                                                                                                                                       |
|       | Write   | e each statement below in terms of propositional logic.                                                                                                                                                  |
|       | (i)     | There is not a player that every coach thinks is the best player in the NBA.                                                                                                                             |
|       |         |                                                                                                                                                                                                          |
|       |         |                                                                                                                                                                                                          |
|       |         |                                                                                                                                                                                                          |
|       | (ii)    | Every coach thinks that their favorite player on their team is the best player on their team or the best player in the NBA.                                                                              |
|       |         |                                                                                                                                                                                                          |
|       |         |                                                                                                                                                                                                          |
|       |         |                                                                                                                                                                                                          |
| Polyr | nomia   | ls                                                                                                                                                                                                       |
| (c)   |         | e error polynomial in the Berlekamp-Welch procedure is $E(x) = x$ , where is the error? Assume there is one corruption.                                                                                  |
|       | mai i   | nere is one corruption.                                                                                                                                                                                  |
|       |         |                                                                                                                                                                                                          |
|       |         |                                                                                                                                                                                                          |
|       |         |                                                                                                                                                                                                          |
| (d)   | What    | t's the maximum number of roots a polynomial can have in $GF(p)$ , where $p$ is a prime?                                                                                                                 |
|       |         |                                                                                                                                                                                                          |
|       |         |                                                                                                                                                                                                          |

| (e)  | Let $P(x)$ and $Q(x)$ be two <b>distinct</b> polynomials of degrees $d_P$ and $d_Q$ that all lie on a degree exactly $k-1$ polynomial, what is the smallest |                             |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|      |                                                                                                                                                             |                             |
|      |                                                                                                                                                             |                             |
| Grap | hs                                                                                                                                                          |                             |
| (f)  | If a connected planar graph has 3 faces and 10 vertices, how many ed                                                                                        | dges does it have?          |
|      |                                                                                                                                                             |                             |
|      |                                                                                                                                                             |                             |
|      |                                                                                                                                                             |                             |
| (g)  | What is the maximum number of edges we can have in a bipartite gra                                                                                          | aph on 2 <i>n</i> vertices? |
|      |                                                                                                                                                             |                             |
|      |                                                                                                                                                             |                             |
| Mod  | ular Arithmetic                                                                                                                                             |                             |
|      |                                                                                                                                                             |                             |
| (n)  | Find $3^{13} \mod 13$ .                                                                                                                                     |                             |
|      |                                                                                                                                                             |                             |
|      |                                                                                                                                                             |                             |
| (i)  | Find $42^{63} \pmod{11}$ .                                                                                                                                  |                             |
|      |                                                                                                                                                             |                             |
|      |                                                                                                                                                             |                             |
|      |                                                                                                                                                             |                             |
| (j)  | For two distinct primes $p, q$ , find $p^{q-1} + q^{p-1} \mod pq$ .                                                                                         |                             |
|      |                                                                                                                                                             |                             |
|      |                                                                                                                                                             |                             |
|      |                                                                                                                                                             | İ                           |

| (k) Let <i>m</i> and <i>n</i> be copring value of <i>x</i> modulo <i>mn</i> of <i>x</i> modulo | me. If we know that $x \equiv n$ ? Simplify your answer.     | $n-1 \pmod{m}$ and $x \equiv n$        | $-1 \pmod{n}$ , what is the |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|-----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                        |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                        |                             |
| (l) Find all primes $p$ such                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | that $70^p \equiv 1 \mod p$ .                                |                                        |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                        |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                        |                             |
| Bijections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |                                        |                             |
| (m) For each function belo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ow, fill in the <i>one</i> bubble th                         | at most completely describ             | pes the function.           |
| (i) $f: \mathbb{Z}^+ \to \mathbb{N}$ , who $f: \mathbb{Z}^+ \to \mathbb{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ere $f(x) = x$ . Onto                                        | ○ Both                                 | ○ Neither                   |
| (ii) $f:[1,\infty) \to [0,1]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              | O Both                                 | Neither                     |
| (ii) j : [1, 11) / [0, 1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\bigcirc \mathbf{Onto}$                                     | <b>O</b> Both                          | <b>Neither</b>              |
| (iii) $f: \mathbb{R} \to \mathbb{R}$ , wher $\bigcirc$ <b>1-1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e $f(x) = x - 1$ for $x \le 2$ , as  Onto                    | and $f(x) = 2x^2 - 5$ for $x > 2$ Both | 2. Neither                  |
| (iv) $f: GF(65) \rightarrow G$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $F(65)$ , where $f(x) = x^5$ . N                             | Note that $65 = 5 \cdot 13$ .          | <u> </u>                    |
| <b>1-1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Onto                                                         | O Both                                 | <b>Neither</b>              |
| Counting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                              |                                        |                             |
| (n) How many ways can I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | order the string "BROCCO                                     | OLI"?                                  |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                        |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                        |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                        |                             |
| (o) How many 5-(English are 5 vowels and 21 co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ) letter strings are there wit<br>onsonants in the alphabet. | h exactly 3 vowels and 2 co            | onsonants? Note that there  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                        |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |                                        |                             |

| (p) | How many solutions to $x+y+z \le 30$ where $x$ , $y$ , and $z$ are non-negative fourth variable, $w$ .                                                              | tive integers? <i>Hint: Introduce a</i>          |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|     |                                                                                                                                                                     |                                                  |
|     |                                                                                                                                                                     |                                                  |
|     |                                                                                                                                                                     |                                                  |
| Bou | unds                                                                                                                                                                |                                                  |
| (q) | ) Let $X$ be a random variable such that $\mathbb{E}[X] = 10$ and $X$ is always at le bound on $\mathbb{P}(X \ge 20)$ .                                             | east $-3$ . Give a non-trivial upper             |
|     |                                                                                                                                                                     |                                                  |
|     |                                                                                                                                                                     |                                                  |
|     |                                                                                                                                                                     |                                                  |
| (r  | I have a random variable $Y$ , and I only know $\mathbb{E}[Y^2] = 6$ . Provide the $\mathbb{P}( Y - \mathbb{E}[Y]  \ge 8)$ .                                        | ne best possible upper bound on                  |
|     |                                                                                                                                                                     |                                                  |
|     |                                                                                                                                                                     |                                                  |
|     | l                                                                                                                                                                   |                                                  |
| Ran | ndom Variables                                                                                                                                                      |                                                  |
| (s) | Suppose I have the PDF $f_X(x) = cx$ for when $x \in [0,1]$ and 0 elsewhere                                                                                         | ere. Find $c$ .                                  |
|     |                                                                                                                                                                     |                                                  |
|     |                                                                                                                                                                     |                                                  |
|     |                                                                                                                                                                     |                                                  |
| (t  | Suppose $X \sim \mathcal{N}(0,4)$ and $Y \sim \mathcal{N}(1,5)$ are independent. What is I answer in terms of $\Phi$ , the CDF of the standard normal distribution. | $\mathbb{P}(X < Y)$ ? You may leave your         |
|     |                                                                                                                                                                     |                                                  |
|     |                                                                                                                                                                     |                                                  |
|     |                                                                                                                                                                     |                                                  |
| (u  | ) Let $X$ and $Y$ be independent random variables with $\mathbb{E}[X] = 1$ , $Var(X)$ What is $\mathbb{E}[(X+Y)^2]$ ?                                               | $= 3$ , $\mathbb{E}[Y] = 1$ , and $Var(Y) = 2$ . |
|     |                                                                                                                                                                     |                                                  |
|     |                                                                                                                                                                     |                                                  |
|     |                                                                                                                                                                     |                                                  |

| (v) Let X be uniform in the range $[0,1]$ and let $Y = \max(X, 1-X)$ . What     | at is the PDF of Y?                   |
|---------------------------------------------------------------------------------|---------------------------------------|
|                                                                                 |                                       |
| (w) Let $X, Y$ be independent uniform random variables over the $[0,1]$ in      | terval. Find the CDF of $ Y - X $ .   |
|                                                                                 |                                       |
|                                                                                 |                                       |
|                                                                                 |                                       |
| (x) Let $X, Y$ be independent exponential random variables with means $\lambda$ | $\lambda_X = 1$ and $\lambda_Y = 2$ . |
| (i) What is the PDF of $min(X,Y)$ ?                                             |                                       |
|                                                                                 |                                       |
| (ii) What is $\mathbb{E}[\min(X,Y)]$ ?                                          |                                       |
|                                                                                 |                                       |
|                                                                                 |                                       |

# 3 A Midsummer Light's Dream $\left[3/3/3/5/4/3/3 \text{ Points}, 24 \text{ Total}\right]$

Any correct answer will receive full credit. Partial credit may be awarded if work is shown. Parts (e)-(g) do not rely on (a)-(d), and vice versa.

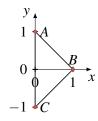
On Bernoulli Ave., there are (n+1) lamps in a line, spaced 1 block apart. We treat the lamps as the locations  $\{0,1,2,\ldots,n\}$  on a number line, and the "blocks" as the intervals  $(0,1),(1,2),\ldots,(n-1,n)$ .

Each lamp is turned on independently with probability p. A block (i, i+1) is "illuminated" if both the light at i and the light at (i+1) are on. Let  $X_i$  be an indicator for the block (i, i+1) being illuminated, and let X be the total number of illuminated blocks. Your answers may be in terms of n, p.

| (a) What is $\mathbb{E}[X]$ ?                                             |  |
|---------------------------------------------------------------------------|--|
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
|                                                                           |  |
| (b) Consider $i, j$ where $ i - j  = 1$ . What is $\mathbb{E}[X_i X_j]$ ? |  |
|                                                                           |  |

| Now consider $i, j$ where | i-j >1. Wha       | $\mathbb{E}[\Lambda_i\Lambda_j]$ : |                   |                  |               |
|---------------------------|-------------------|------------------------------------|-------------------|------------------|---------------|
|                           |                   |                                    |                   |                  |               |
|                           |                   |                                    |                   |                  |               |
|                           |                   |                                    |                   |                  |               |
|                           |                   |                                    |                   |                  |               |
|                           |                   |                                    |                   |                  |               |
|                           |                   |                                    |                   |                  |               |
|                           |                   |                                    |                   |                  |               |
|                           |                   |                                    |                   |                  |               |
|                           |                   |                                    |                   |                  |               |
|                           |                   |                                    |                   |                  |               |
|                           |                   |                                    |                   |                  |               |
|                           |                   |                                    |                   |                  |               |
|                           |                   |                                    |                   |                  |               |
| Compute $Var(X)$ . You    | •                 |                                    | 7 .1              |                  | \ (1\) (\)    |
|                           | nay leave your an | iswers in terms of a               | a, b, c, the answ | ers from Parts ( | a), (b), (c), |
| respectively.             | nay leave your an | swers in terms of a                | a, b, c, the answ | ers from Parts ( | a), (b), (c), |
|                           | nay leave your an | iswers in terms of a               | a, b, c, the answ | ers from Parts ( | a), (b), (c), |
|                           | nay leave your an | iswers in terms of a               | a, b, c, the answ | ers from Parts ( | a), (b), (c), |
|                           | nay leave your an | iswers in terms of a               | a, b, c, the answ | ers from Parts ( | a), (b), (c), |
|                           | nay leave your an | iswers in terms of a               | a, b, c, the answ | ers from Parts ( | a), (b), (c), |
|                           | nay leave your an | iswers in terms of a               | a, b, c, the answ | ers from Parts ( | a), (b), (c), |
|                           | nay leave your an | iswers in terms of a               | a, b, c, the answ | ers from Parts ( | a), (b), (c), |
|                           | nay leave your an | iswers in terms of a               | a, b, c, the answ | ers from Parts ( | a), (b), (c), |
|                           | nay leave your an | iswers in terms of a               | a, b, c, the answ | ers from Parts ( | a), (b), (c), |
|                           | nay leave your an | iswers in terms of a               | a, b, c, the answ | ers from Parts ( | a), (b), (c), |
|                           | nay leave your an | iswers in terms of a               | a, b, c, the answ | ers from Parts ( | a), (b), (c), |
|                           | nay leave your an | iswers in terms of a               | a, b, c, the answ | ers from Parts ( | a), (b), (c), |
|                           | nay leave your an | iswers in terms of a               | a, b, c, the answ | ers from Parts ( | a), (b), (c), |
|                           | nay leave your an | iswers in terms of a               | a, b, c, the answ | ers from Parts ( | a), (b), (c), |

Now, imagine that every evening, each lamp is turned on independently with probability p. Each evening, a different set of lamps may be lit. A (questionably effective) lamp inspector is assigned to Bernoulli Ave. Initially, all blocks are unapproved.


Every evening, the inspector samples a block uniformly at random among *all* blocks. If it is not illuminated or it is already approved, the inspector does nothing. Otherwise, if the block is not already approved and is illuminated, he is satisfied and approves it. Let *N* be the number of evenings that the inspector needs until he approves all blocks.

| (e) | Suppose the inspector has already approved exact inspector approves a new block tonight? (Your are                  | tly $(i-1)$ blocks. What is the probability $q_i$ that the aswer may be in terms of $n, p, i, k$ .)            |
|-----|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|     |                                                                                                                     |                                                                                                                |
|     |                                                                                                                     |                                                                                                                |
|     |                                                                                                                     |                                                                                                                |
| (f) | What is $\mathbb{E}[N]$ ? You may leave your answer in term answer to Part (e). <i>You may use a summation, but</i> | ms of the variables $q_i$ for $i = 1,, n$ , where $q_i$ is the tyou may not use expectations in your answer.   |
|     |                                                                                                                     |                                                                                                                |
|     |                                                                                                                     |                                                                                                                |
|     | Will at Az fado az                                                                                                  |                                                                                                                |
| (g) | Part (e). You may use a summation, but you may i                                                                    | erms of $q_i$ for $i = 1,, n$ , where $q_i$ is the answer to not use expectations or variances in your answer. |
|     |                                                                                                                     |                                                                                                                |
|     |                                                                                                                     |                                                                                                                |

# 4 It Can't Hurt To Try-angle [3/3/4/5 Points, 15 Total]

Suppose we have the triangle as below. It is defined by 3 vertices A, B, C. The coordinates are: A: (0,1), B: (1,0), C: (0,-1).

We choose a point uniformly at random in the triangle. Let the random variable *X* be the *x*-coordinate of the point and let the random variable *Y* be the *y*-coordinate of the point.



(a) Find  $f_{X,Y}(x,y)$ , i.e. the joint density of X and Y.

(b) Find  $\mathbb{E}[Y]$ .



(c) Find the PDF of X.



(d) Let Z = |X| + |Y|. Find the PDF of Z.



### 5 Staff Curry [2/2/3/3/3/3/3/3/3/3 Points, 30 Total]

(a) Vishnu and James are playing basketball! Vishnu, a secret NBA prodigy, scores on half of all shots he takes; James, who hasn't played since high school, has only a  $\frac{1}{4}$  chance of scoring on each shot. Assume that each shot is independent of all others.

Vishnu and James play the following game: in each round, they both try to take a shot. If one of them scores and the other doesn't, the player that scored wins. Otherwise (if neither of them score or both of them score), the game moves on to the next round.

| (i)   | What is the probability that Vishnu wins in the first round?                                                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ii)  | What is the probability that James wins in the first round?                                                                                                                                    |
| (iii) | What distribution does the number of rounds in the game follow? Give a name and list any parameter(s). (No formulas necessary.)                                                                |
| (iv)  | What is the probability that Vishnu wins <i>given that</i> the game ends in exactly one round? You may leave your answer in terms of (i) and (ii), the answers to the corresponding two parts. |
| (v)   | What is the probability that Vishnu eventually wins the game? You may leave your answer in terms of (i), (ii), and (iv), the answers to those parts.                                           |
| (vi)  | To level the playing field, we require Vishnu to take two shots each round; he must score both of them in order for it to count. Now what is the probability that Vishnu eventually wins?      |
|       |                                                                                                                                                                                                |

| (b) | Now suppose that Vishnu and James are playing a full game of basketball. In an attempt to avoid James' guarding, Vishnu takes his shot from a distance uniformly distributed in the real interval $[4,8]$ ; if he shoots from a distance of $d$ , his probability of scoring is $p(d)$ . |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|     | (i) Fill in the boxes such that the following integral calculates the probability of Vishnu scoring.                                                                                                                                                                                     |  |  |
|     | $\int dx$                                                                                                                                                                                                                                                                                |  |  |
|     |                                                                                                                                                                                                                                                                                          |  |  |
|     | (ii) Describe in one sentence what the variable of integration $x$ represents.                                                                                                                                                                                                           |  |  |
|     |                                                                                                                                                                                                                                                                                          |  |  |
| (c) | Continuing from the last part, let $p(d) = \frac{12}{d^2}$ . Do not include integrals in any of the following answers.                                                                                                                                                                   |  |  |
|     | (i) What is the probability that Vishnu scores?                                                                                                                                                                                                                                          |  |  |
|     |                                                                                                                                                                                                                                                                                          |  |  |
|     |                                                                                                                                                                                                                                                                                          |  |  |
|     |                                                                                                                                                                                                                                                                                          |  |  |
|     | (ii) What is the probability that Vishnu scores if we know that he shot from a distance of 6 or less?                                                                                                                                                                                    |  |  |
|     |                                                                                                                                                                                                                                                                                          |  |  |
|     |                                                                                                                                                                                                                                                                                          |  |  |
|     |                                                                                                                                                                                                                                                                                          |  |  |
|     | (iii) What is the probability that Vishnu shot from a distance of 6 or less given that he scored? You may leave your answer in terms of (i) and (ii), the answers to the previous two parts.                                                                                             |  |  |

### 6 A Walk in the Arc $\left[4/5/4/4/5/4 \text{ Points}, 26 \text{ Total}\right]$

*Note: Parts (d)-(f) do not depend on (a)-(c), and vice versa.* 

There are 5 points spaced evenly around a circle, labeled  $\{1,2,\ldots,5\}$  in clockwise order. The **distance** between two points is the length of the shorter path (either clockwise or counter-clockwise) between them. For example, the distance between points 1 and 4 is 2, as we can move counterclockwise from 1 to 5 to 4.

Two flies on the circle start in positions  $S_1$  and  $S_2$ . After every minute, each fly either goes one spot clockwise or one spot counterclockwise, each with probability  $\frac{1}{2}$ . The flies make their choices **independently**.

(a) Prove that no matter what  $S_1$  and  $S_2$  are, there is some sequence of moves they can make so that they get to the same point.

(b) Draw a 3-state Markov chain that models how the distance between the flies changes each minute. Define all states and label transition probabilities.

(c) If the flies keep doing this for a very long time, what fraction of steps will they be on the same point?

|     | ne next parts, the flies have the same behavior. However, now there are ad a circle, labeled $\{1,2,\ldots,8\}$ in clockwise order. We define distance |                       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| (d) | Prove that if the distance from $S_1$ to $S_2$ is odd, the flies will never end                                                                        | up at the same point. |
| (e) | Now, assume the distance from $S_1$ to $S_2$ is even. Draw a 3-state M distance between the flies changes each minute. Define all states and           |                       |
| (f) | The flies start distance 2 apart. Find the expected number of minutes for the first time. Partial credit will be awarded for setting up the corr       |                       |

#### 7 All Things Come to Path [5/4/4 Points, 13 Total]

A graph is *k*-vertex-connected if it has more than *k* vertices, and removing any set of **fewer** than *k* vertices keeps the graph connected.

A set of paths is **internally vertex-disjoint (IVD)** if they all have the same start and end vertices, but don't share any others.

(a) Let G be a graph with the property that for any u, v, there is a set of at least k IVD paths between them. Prove that G is k-vertex-connected.

For the rest of the question, let  $G = K_{n,n}$ , a complete bipartite graph with n vertices on each side. If we prove the following two facts, then by part (a), we conclude that  $K_{n,n}$  is n-vertex-connected.

(b) Prove that if u and v are both on the left side, there exist n IVD paths between them.

(c) Prove that for u on the left and v on the right, there exist n IVD paths between them.

# 8 Moment (Generating Function) of Truth $\left[4/5/4/5 \text{ Points}, 18 \text{ Total}\right]$

We define the moment generating function (MGF),  $M_X(t)$ , of a random variable X, as follows:

$$M_X(t) = \mathbb{E}[e^{tX}]$$

(a) Determine the moment generating function of  $X \sim \text{Bernoulli}(p)$ .



(b) Prove that if X and Y are independent, then  $M_{X+Y}(t) = M_X(t)M_Y(t)$ . (Hint: You can use the fact that if X and Y are independent, then f(X) and g(Y) are also independent, for any two functions f,g.)

| (c) Determine the | he moment generating fu     | nction of $X \sim \text{Bin}(n,$ | (p). You may leave your answer | in terms of |
|-------------------|-----------------------------|----------------------------------|--------------------------------|-------------|
| a, the answe      | er to Part (a), even if you | do not get it correct.           |                                |             |
|                   |                             |                                  |                                |             |
|                   |                             |                                  |                                |             |
|                   |                             |                                  |                                |             |
|                   |                             |                                  |                                |             |

- (d) The moment generating function of a Gaussian random variable with mean  $\mu$  and variance  $\sigma^2$  is  $M_X(t) = \exp(\mu t + \frac{\sigma^2 t^2}{2})$ . Suppose X, Y are independent random variables such that  $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$  and  $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$ . Using moment generating functions, prove that  $X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ . *Notes:* 
  - $\exp(x)$  is just another way to write  $e^x$ .
  - Two random variables are identically distributed iff they have the same MGF.
  - You may use the result in part (b), even if you do not correctly answer part (b).

### 9 Relax, It's Not RE [5 Points Each, 10 Total]

- (a) Suppose we wish to write a program FindHalt that takes in a program P and
  - (1) Returns an x from  $\{1, 2, ..., 70\}$  such that P(x) halts if such an x exists
  - (2) Returns "None" if no such x exists

Prove that no such program FindHalt can exist.

- (b) Suppose that we relax requirement (2), and only want a program RelaxedFindHalt that
  - (1) Returns an x from  $\{1, 2, ..., 70\}$  such that P(x) halts if such an x exists
  - (2) Loops forever if no such x exists

Describe, in pseudocode or English, how to implement RelaxedFindHalt.

### 10 So Long, and Thanks for All the Poisson [3/3/5 Points, 11 Total]

Any correct answer will receive full credit. Partial credit may be awarded if work is shown.

A new GSI, Eel-izabeth, starts teaching CS 70 next fall. Each discussion, she keeps track of the number of mistakes she makes. The number of mistakes she makes per discussion follows a Poisson(1.5) distribution. Each discussion is independent of all others.

She promises that if she makes m mistakes over the semester, she will bring Swedish Fish for her section.

| (a) | Eel-izabeth gives 30 discussions over the fall. Let $M$ be the number entire semester. What is $\mathbb{E}[M]$ ?                                                                                            | of mistakes she makes over the |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|     |                                                                                                                                                                                                             |                                |
|     |                                                                                                                                                                                                             |                                |
|     |                                                                                                                                                                                                             |                                |
|     |                                                                                                                                                                                                             |                                |
| (b) | What is $Var(M)$ ?                                                                                                                                                                                          |                                |
|     |                                                                                                                                                                                                             |                                |
|     |                                                                                                                                                                                                             |                                |
|     |                                                                                                                                                                                                             |                                |
|     |                                                                                                                                                                                                             |                                |
| (c) | Eel-izabeth doesn't actually want to buy Swedish Fish for her sections that with at least 90% probability, she doesn't have to buy the Sinequality. (You may leave your answer as a numerical expression re | Swedish Fish? Use Chebyshev's  |
|     |                                                                                                                                                                                                             | <b>3</b> /                     |
|     |                                                                                                                                                                                                             |                                |

#### 11 The End

Congrats, you finished the class! Here is a cute dog to celebrate:



Or, for those of you who like cats more, here is a kitten:

