EXAMINATION 2

Chemistry 3A

Name: \qquad
Key
SID \#: Make sure the number is correct!
Print first name before second! Use capital letters!

GSI (if you are taking Chem 3AL): \qquad
Peter Vollhardt
April 9, 2019

Please provide the following information if applicable.

Making up an I Grade
If you are, please indicate the semester during which you took previous Chem 3A and the instructor:

Instructor

Auditor \qquad

Please write the answer you wish to be graded in the boxed spaces provided.
Do scratch work on the back of the pages. This test should have 14 numbered pages. Check to make sure that you have received a complete exam. A good piece of advice: Read carefully over the questions (at least twice); make sure that you understand exactly what is being asked; avoid sloppy structures or phrases. It is better to be pedantic in accuracy now than sorry later! Good Luck!

Do not remove this (or any other) page from the exam. It will compromise the consonance of scanned copies in Gradescope.

You probably will not need them for the exam, but here they are for added comfort:

H	Electronegativity values of the elements (Pauling scale)																He
$\begin{aligned} & \mathrm{Li} \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathrm{Be} \\ & 1.5 \end{aligned}$											$\begin{gathered} \mathrm{B} \\ 2.0 \end{gathered}$	$\underset{2.5}{\mathrm{C}}$	$\begin{gathered} N \\ N .0 \end{gathered}$	$\begin{gathered} 0 \\ 3.5 \end{gathered}$	$\begin{gathered} \mathrm{F} \\ 4.0 \end{gathered}$	Ne
$\begin{aligned} & \mathrm{Na} \\ & 0.9 \end{aligned}$	$\begin{aligned} & \hline \mathrm{Mg} \\ & 1.2 \end{aligned}$											$\begin{aligned} & \hline \mathrm{Al} \\ & 1.5 \end{aligned}$	$\begin{array}{r} \mathrm{Si} \\ 1.8 \end{array}$	$\begin{gathered} \hline \mathrm{P} \\ 2.1 \end{gathered}$	$\begin{gathered} \mathrm{s} \\ 2.5 \end{gathered}$	$\begin{aligned} & \mathrm{Cl} \\ & 3.0 \end{aligned}$	Ar
$\begin{gathered} \mathrm{K} \\ 0.8 \end{gathered}$	$\begin{aligned} & \mathrm{Ca} \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline \mathrm{Sc} \\ & 1.3 \end{aligned}$	$\begin{array}{r} \mathrm{Ti} \\ 1.5 \end{array}$	$\begin{gathered} \mathrm{V} \\ 1.6 \end{gathered}$	Cr	$\begin{gathered} \mathrm{Mn} \\ 1.5 \end{gathered}$	$\begin{aligned} & \mathrm{Fe} \\ & 1.8 \end{aligned}$	Co	$\begin{gathered} \mathrm{Ni} \\ 1.8 \end{gathered}$	$\begin{aligned} & \mathrm{Cu} \\ & 1.9 \end{aligned}$	$\begin{aligned} & \mathrm{Zn} \\ & 1.6 \end{aligned}$	$\begin{aligned} & \mathrm{Ga} \\ & 1.6 \end{aligned}$	$\begin{aligned} & \hline \mathrm{Ge} \\ & 1.8 \end{aligned}$	$\begin{aligned} & \text { As } \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mathrm{Se} \\ & 2.4 \end{aligned}$	$\begin{aligned} & \mathrm{Br} \\ & 2.8 \end{aligned}$	$\begin{aligned} & \hline \mathrm{Kr} \\ & 3.0 \end{aligned}$
$\begin{aligned} & \mathrm{Rb} \\ & 0.8 \end{aligned}$	$\begin{gathered} \mathrm{Sr} \\ 1.0 \end{gathered}$	$\begin{gathered} \hline \mathrm{Y} \\ 1.2 \end{gathered}$	$\begin{aligned} & \mathrm{Zr} \\ & 1.4 \end{aligned}$	$\begin{aligned} & \hline \mathrm{Nb} \\ & 1.6 \end{aligned}$	Mo 1.8	$\begin{aligned} & \mathrm{Tc} \\ & 1.9 \end{aligned}$	Ru 2.2	Rh 2.2	$\begin{aligned} & \hline \mathrm{Pd} \\ & 2.2 \end{aligned}$	Ag 1.9	$\begin{aligned} & \mathrm{Cd} \\ & 1.7 \end{aligned}$	$\begin{aligned} & \text { In } \\ & 1.7 \end{aligned}$	Sn	Sb 1.9	$\begin{aligned} & \mathrm{Te} \\ & 2.1 \end{aligned}$	1 2.5	Xe 2.6
$\begin{aligned} & \hline \mathrm{Cs} \\ & 0.7 \end{aligned}$	Ba 0.9	La 1.1	$\begin{aligned} & \hline \mathrm{Hf} \\ & 1.3 \end{aligned}$	$\begin{aligned} & \mathrm{Ta} \\ & 1.5 \end{aligned}$	W 1.7	$\begin{aligned} & \mathrm{Re} \\ & 1.9 \end{aligned}$	Os 2.2	lr 2.2	Pt 2.2	Au 2.4	$\begin{aligned} & \hline \mathrm{Hg} \\ & 1.9 \end{aligned}$	Ti 1.8	Pb 1.8	Bi 1.9	PO 2.0	$\begin{gathered} \text { At } \\ 2.2 \end{gathered}$	$\begin{aligned} & \hline \mathrm{Rn} \\ & 2.4 \end{aligned}$
$\begin{aligned} & \hline \mathrm{Fr} \\ & 0.7 \end{aligned}$	$\begin{aligned} & \mathrm{Ra} \\ & 0.7 \end{aligned}$	$\begin{aligned} & \hline \mathrm{AC} \\ & 1.1 \end{aligned}$															

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.2
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
1.3	1.5	1.7	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	

Table 2.2 Relative Acidities of Common Compounds $\left(25^{\circ} \mathrm{C}\right)$

Acid	$\boldsymbol{K}_{\mathrm{a}}$			$\mathrm{p} K_{\mathrm{a}}$
Hydrogen iodide, HI (strongest acid)	$\sim 1.0 \times 10^{10}$			-10.0
Hydrogen bromide, HBr	$\sim 1.0 \times 10^{9}$			-9.0
Hydrogen chloride, HCl	$\sim 1.0 \times 10^{8}$			-8.0
Sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$	$\sim 1.0 \times 10^{3}$.	$-3.0{ }^{\text {a }}$
Hydronium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$	50		$\stackrel{ }{*}$	-1.7
Nitric acid, HNO_{3}	25		$\stackrel{5}{0}$	-1.4
Methanesulfonic acid, $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$	16	?	$\stackrel{\square}{\square}$	-1.2
Hydrogen fluoride, HF	6.3×10^{-4}	-	¢	3.2
Acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$	2.0×10^{-5}		$\stackrel{\square}{\circ}$	4.7
Hydrogen cyanide, HCN	6.3×10^{-10}	-	균	9.2
Ammonium ion, NH_{4}^{+}	5.7×10^{-10}	区	-	9.3
Methanethiol, $\mathrm{CH}_{3} \mathrm{SH}$	1.0×10^{-10}	$\stackrel{\square}{5}$	-	10.0
Methanol, $\mathrm{CH}_{3} \mathrm{OH}$	3.2×10^{-16}	$\underline{1}$	9	15.5
Water, $\mathrm{H}_{2} \mathrm{O}$	2.0×10^{-16}		$\frac{\square}{\text { w }}$	15.7
Ethyne, $\mathrm{HC} \equiv \mathrm{CH}$	$\sim 1.0 \times 10^{-25}$		-	~ 25
Ammonia, NH_{3}	1.0×10^{-35}		$\underline{\square}$	35
Ethene, $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$	$\sim 1.0 \times 10^{-44}$			~ 44
Methane, CH_{4} (weakest acid)	$\sim 1.0 \times 10^{-50}$			~ 50
Note: $K_{\mathrm{a}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right] /[\mathrm{HA}] \mathrm{mol} \mathrm{L}^{-1}$. ${ }^{\text {a }}$ First dissociation equilibrium				

I. [30 Points] Name or draw, as appropriate, the following molecules according to the IUPAC rules. Indicate stereochemistry where necessary.
a.

b.
(2S,5R)-5-Mercapto-2-hexanol

c.

This enantiomer
(2S,3S)-3-Methoxy-2-methylthiohexane
d.
(S)-1-Chloro-1-[(R)-1-chloroethoxy]butane

e.

II. [80 Points] Add the missing starting materials, reagents, or products (aqueous work-up is assumed where necessary). Caution: Do not forget to consider stereochemistry!
a.

\square
For the following questions, circle your choice of an answer:

Is the product chiral?
Is the product optically active?
Yes No
b.

This enantiomer

For the following questions, circle your choice of an answer:

Is the product chiral?
Is the product optically active?

Yes No
Yes No
C.

This enantiomer

For the following questions, circle your choice of an answer:
Is the product chiral?
Yes
No
Is the product optically active? Yes
No
d.

e.

f.

g.

h.

This enantiomer

Complete the stencil in the box by adding the missing substituent at C1, C2, and C3

For the following question, circle your choice of an answer:

Is the product chiral?
Is the product optically active?

Yes
Yes No
III. [40 Points] The following reactions proceed (predominantly) by $\mathrm{S}_{\mathrm{N}} 2, \mathrm{~S}_{\mathrm{N}} 1$, E2, or E1 pathways, respectively. Give the major organic product in each case and answer the questions by circling the most applicable statement.
a.

Complete the stencil in the box by adding the missing substituent at C2

Mechanism:
SN
$S_{N} 1$
E2
E1

When using $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$ instead of $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$, which one of the following ratios will increase:
SN / SN
Sn 1/E1
E2 / Sn 2
Sn / E2
b.

Mechanism:

SN
$S_{N} 1$
E2
E1

Changing the reagent to $\mathrm{Na}^{+-} \mathrm{SCH}_{3}$ has one of the following effects:
E2 / SN1 increases
EA / $S_{N} 1$ increases
Rate increases
Rate decreases
c.

Complete the stencil in the box by adding all missing substituents

Mechanism:
Sn2
$\mathrm{S}_{\mathrm{N}} 1$
E2
E1

Omitting Nal from the starting mixture has one of the following effects:
Nothing happens
The starting material equilibrates with its diastereomer
E2 / E1 ratio increases
SN2 / E1 ratio increases

Which of the following statements is correct?
Doubling the concentration of starting iodide will double the rate of its disappearance
Doubling the concentration of starting iodide will quadruple the rate of its disappearance
Doubling the concentration of starting iodide will not change the rate of its disappearance
IV. [40] Points]
a. For the following reaction, provide a detailed mechanism (i.e., write a scheme with structures, arrow pushing, etc.) Do not add any reagents! This is not a synthesis!

Work from left to right in the following spaces. There is more space than you will need.

b. For the following reaction, provide a detailed mechanism (i.e., write a scheme with structures, arrow pushing, etc.) Do not add any reagents! This is not a synthesis!

Work from left to right in the following spaces. There is more space than you will need. Do not worry about stereochemistry.

V. [40 Points]
a. Provide a viable conversion of the starting material below as the only carbon source to the product. It will help you if you execute a retrosynthesis on the back of the preceding page (on your left). This problem should look familiar.

Work from left to right in the following spaces. There is much space than you will need.

b. Provide a viable conversion of the starting material below to the product. You may use any additional organic compounds containing four carbons or less and any inorganic compounds in your scheme. It will help you if you execute a retrosynthesis on the back of the preceding page (on your left).

Work from left to right in the following spaces. There is more space than you will need.

VI. [20 Points]
a. We learned that the acidity if alcohols decreases when progressing from primary to secondary to tertiary, as shown in Table 8.2 below, because of increasing steric hindrance to solvation of the resulting conjugate base.

Table 8.2	pK_{a} Values of Alcohols in Water
Compound	$\mathbf{p} K_{\mathrm{a}}$
HOH	15.7
$\mathrm{CH}_{3} \mathrm{OH}$	15.5
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	15.9
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$	17.1
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$	18

In contrast, Table 8.3 in your book shows that the acidities of alkyloxonium ions increase when progressing from primary to secondary to tertiary.

Table 8.3	$\mathrm{p} K_{\mathrm{a}}$ Values of Four Protonated Alcohols
Compound	$\mathrm{pK} \mathrm{K}_{\mathrm{a}}$
$\mathrm{CH}_{3} \stackrel{+}{\mathrm{O}} \mathrm{H}_{2}$	-2.2
$\mathrm{CH}_{3} \mathrm{CH}_{2} \stackrel{+}{\mathrm{O}} \mathrm{H}_{2}$	-2.4
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}_{\mathrm{+}} \mathrm{H}_{2}$	-3.2
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}_{2}$	-3.8

Place an \boldsymbol{X} mark in the box preceding the most reasonable explanation for this finding.
\square Along the series (primary to secondary to tertiary), hyperconjugation increases.
\square Along the series (primary to secondary to tertiary), the alcohols resulting from proton dissociation are increasingly better solvated.

Along the series (primary to secondary to tertiary), the oxonium ions suffer increasing steric hindrance to solvation.

\square
Along the series (primary to secondary to tertiary), the oxonium ions suffer decreasing inductive stabilization.
b. The following four problems list pairs of statements. For each, place an \boldsymbol{X} mark in the box preceding the correct one.
1.

Electronegativity increases to the right and up the periodic table.
\square Electronegativity increases to the right and down the periodic table.
2.

Nucleophilicity in protic solvents increases down the periodic table.

Nucleophilicity in aprotic solvents increases down the periodic table.
3.

Leaving group ability increases to the right and down the periodic table.

Leaving group ability increases to the right and up the periodic table.
4.

The $\mathrm{S}_{\mathrm{N}} 2$ reaction of oxacyclopropanes is possible because the ring carbon is relatively unhindered.

The $\mathrm{S}_{\mathrm{N}} 2$ reaction of oxacyclopropanes is possible because ring strain is released.

* $\mathbb{U h e} \mathbb{E}$ nod *

