Physics 110A (Electrodynamics) – Midterm Exam / October 7, 2019

Problem 1 (50 points)

An infinite conducting wedge has an opening angle of $\pi/4$. The conducting wedge occupies the portion of space given, in cylindrical coordinates, by

$$-\infty < z < \infty, \qquad 0 \le s < \infty, \qquad \frac{7\pi}{4} \le \phi \le 2\pi.$$

The remaining portion of space $(0 < \phi < \frac{7\pi}{4})$ has an electric field with a scalar potential given by

$$V = V_0 s^{\alpha} \sin(\frac{4}{7}\phi)$$
 for some constants V_0 and $\alpha > 0$.

- (a) If the space outside the conductor is free of charges, what is the value of α ? (25 points)
- (b) Find the surface charge density σ on the conductor surface at $\phi = 0$. The answer should be a function of s and the unknown constants V_0 and α . (25 points)

PLEASE TURN THE PAGE \Longrightarrow

Problem 2 (50 points)

A sphere of radius R is carrying a uniform surface charge density σ . Inside it is an smaller sphere of radius R/3 carrying (an oppositely charged) surface charge density -9σ . The outer sphere is cut in half, and the two hemispheres (left and right) are separated, with a very (infinitesimally) thin gap between them.

- (a) Calculate the electrostatic energy of this configuration (ignoring the thin gap). (25 points)
- (b) Calculate the magnitude $|\vec{F}|$ of the force \vec{F} needed to keep the right hemisphere apart from the left one. (\vec{F} must balance the force exerted on the right hemisphere by the inner sphere and the left hemisphere.) (25 points)