Physics 110A (Electrodynamics) - Midterm Exam / October 7, 2019

Problem 1 (50 points)

An infinite conducting wedge has an opening angle of $\pi / 4$.
The conducting wedge occupies the portion of space given, in cylindrical coordinates, by

$$
-\infty<z<\infty, \quad 0 \leq s<\infty, \quad \frac{7 \pi}{4} \leq \phi \leq 2 \pi
$$

The remaining portion of space $\left(0<\phi<\frac{7 \pi}{4}\right)$ has an electric field with a scalar potential given by

$$
V=V_{0} s^{\alpha} \sin \left(\frac{4}{7} \phi\right) \quad \text { for some constants } V_{0} \text { and } \alpha>0
$$

(a) If the space outside the conductor is free of charges, what is the value of α ? ($\mathbf{2 5}$ points)
(b) Find the surface charge density σ on the conductor surface at $\phi=0$.

The answer should be a function of s and the unknown constants V_{0} and α.
(25 points)

PLEASE TURN THE PAGE \Longrightarrow

Problem 2 (50 points)

A sphere of radius R is carrying a uniform surface charge density σ. Inside it is an smaller sphere of radius $R / 3$ carrying (an oppositely charged) surface charge density -9σ. The outer sphere is cut in half, and the two hemispheres (left and right) are separated, with a very (infinitesimally) thin gap between them.
(a) Calculate the electrostatic energy of this configuration (ignoring the thin gap). (25 points)
(b) Calculate the magnitude $|\vec{F}|$ of the force \vec{F} needed to keep the right hemisphere apart from the left one. (\vec{F} must balance the force exerted on the right hemisphere by the inner sphere and the left hemisphere.) (25 points)

