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MECHANICAL ENGINEERING

ME106 Fluid Mechanics SOLUTIONS

2nd Test, S19 Prof 5. Morris

1. (100)For an ideal gas having constant specific heat c,, V2 + ¢,T is constant along a streamline in
steady isentropic flow. Using that Bernoulli relation, and the isentropic relations for an ideal gas, and
assuming subsonic flow, derive the expression giving the flow speed V in terms of the pressure and the
temperature at the stagnation point O and the pressure at point A on the Pitot-static tube illustrated.
Why would your expression not hold if the flow were supersonic?
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Solution 10 |0
By combining the ideal gas law p = pRT and the isentropic relation p & g7,
et

TZO _ (pﬂu)]-lh' 20 (11)

where pg and Tp can be chosen to be evaluated at O.

2.0
By applying the Bernoulli relation along the streamline from O to A4, 1V2 + ¢,T' = ¢, Tp, and by using
——

{(1.1) to eliminate T/Ty,
1=1 %
vi=2n{1-(2)77} 20 (1.2)

Because streamlines are parallel at A, the normal component of the Euler equation requires p to be
constant across streamlines. At infinity, far above A, speed V' and pressure p are identical with those
in the undisturbed flow at infinity to the left of O. By measuring T and p at O and p at A, V4 can be
found from {1.2).

For supersonic flow, the Pitot-static tube is separated from the flow at infinity by a shock wave. The 10
formula (1.2) must then be modified to account for the entropy change across the shock wave.
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2. (100) lligh speed fluid of density p is injected with speed v through the small tube as a free jet
into a larger tube containing the same Auid moving with speed Vi < ». Downstream of the mixing
region, the velocity and the pressure can both be assumed to be uniform across the tube. The llow is
incompressible and the Reynolds number is large. (a) By balancing mass and momentum on the control
volume illusirated, show that

pr—m o pa(l o)y - V),

where the aren ratio e = afsl.

(L) Show that between points 1 and 2, the power loss

—

P.L. = z(p2 - p)A([1 - olv + al)).

2

¥ =i arca A
arca T
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Given: (a) Provided the control surface can be chosen so that, at any point on it, viscous stresses do
negligible work,

d 1,2 | e P
di 5Vt Vitgzt =tV- P. - P.L.

{b) An identity: av® + (1 - )V — {av + (1 o')V.}:‘ a(l —a}(v - Vi)*{(1+ a)v (2 - o)V} }.

Solution

(a) By balancing mass and momentuwm on the control volume shown, AVe = (A4 — a}¥) + av and
{1~ p2)A = p{(AVE ~ (av® + (A - @)VF)}, which can be written

Voo {1 &)}V + au, (2.1a)

pr - p{(V8 - (@ +(1- o)V}, (2.18)
= afd

By substituting (2.1a) into (2.1b),

P—’-—% ((1 - o)y + cw)g av® (1 - e)V?,
(1 - o)V + 2a(1 = a)uV) + o*v? — av® ~ (1 - a)V, (
a(l -~ a)V7 +2a(1 - a)oWi + a(l - apv?,

~a(l - a)(v - V)3,

)
2
S’

which is equivalent 1o Lthe result given.
{b) By selting the shaft power, and the storage terin to zero, Lhen evaluating the flux terms in the

mechanical energy halanee,

ﬂ\f?.vfl(él’é" t %) {nva(%v" t ’;—)‘) + (A a)\ﬁ(;vf ' ’;:)} PL.
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By solving for the power loss

PL. {puu(%u"I + I;—:) + (A a)¥y (%l/f + I;—:)} plﬁyl(éVf $ %))

1 . . )
Vad(m — pa) + 3pfl{mr‘ + (1 - )V} l{;‘}‘ (collected terms in 1y then used (2.1a)

1 . g :
Vod(py —pa2) + g,ozl{cw" (- VP - (av+|l - u—_lf’.)"} (substituted for Va in flux terms)

1 n
Vad(p+ pa) + 3[)!1(\'(1 a)(v - V)P{(1+a)ut (2 a)Vi } {by identity given)
1
VaA{pr )~ 540n p {1+ o)+ (2 aw} (by result of part (a))
Al - ]Jg){((_l'v +{1-a¥y) %{(1 taye+(2- cv)V.}} (substituted forVs)

1
E.Al(pl p){la~1v  ali},
(2.3)
as claimed.
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