Final Examination
 Tuesday May 12, 2015
 7:00pm to $10: 00 \mathrm{pm}$
 F295 Haas

Closed Books and Closed Notes
 For Full Credit Answer All Four Questions

Useful Formulae

For the corotational bases shown in the figures:

$$
\begin{align*}
& \mathbf{e}_{x}=\cos (\theta) \mathbf{E}_{x}+\sin (\theta) \mathbf{E}_{y}, \\
& \mathbf{e}_{y}=\cos (\theta) \mathbf{E}_{y}-\sin (\theta) \mathbf{E}_{x} . \tag{1}
\end{align*}
$$

The following identity for the angular momentum of a rigid body relative to a point P will also be useful:

$$
\begin{equation*}
\mathbf{H}_{P}=\mathbf{H}+\left(\overline{\mathbf{x}}-\mathbf{x}_{P}\right) \times m \overline{\mathbf{v}} \tag{2}
\end{equation*}
$$

In computing components of moments, the following identity can be useful:

$$
\begin{equation*}
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{E}_{z}=\left(\mathbf{E}_{z} \times \mathbf{a}\right) \cdot \mathbf{b} \tag{3}
\end{equation*}
$$

We also note that given an vector $\mathbf{a}=\mathbf{a}(t)$ then

$$
\begin{equation*}
\frac{d\|\mathbf{a}\|}{d t}=\frac{\mathbf{a} \cdot \dot{\mathbf{a}}}{\|\mathbf{a}\|} \tag{4}
\end{equation*}
$$

Finally, recall that the work-energy theorem of a rigid body which is subject to a system of K forces and a pure moment \mathbf{M}_{p} is

$$
\begin{equation*}
\dot{T}=\sum_{i=1}^{K} \mathbf{F}_{i} \cdot \mathbf{v}_{i}+\mathbf{M}_{p} \cdot \boldsymbol{\omega} \tag{5}
\end{equation*}
$$

Here, \mathbf{v}_{i} is the velocity vector of the point where the force \mathbf{F}_{i} is applied.

Question 1
 Motion of a Rigid Rod
 (25 Points)

As shown in Figure 1, a thin uniform rod of mass m and length 2ℓ is pin-jointed at O. A force \mathbf{P} of constant magnitude P is transmitted by a cable to point A which is located at the end of the rod. During the ensuing motion, a vertical gravitational force $m g \mathbf{E}_{x}$ also acts on the rigid body.

The position vectors of the center of mass C of the rigid body, the point A relative to the point O, and the point B relative to O, and the angular momentum of the rigid body relative to C have the representations

$$
\begin{equation*}
\overline{\mathbf{x}}=\ell \mathbf{e}_{x}, \quad \mathbf{x}_{A}=2 \ell \mathbf{e}_{x}, \quad \mathbf{x}_{B}=2 \ell \mathbf{E}_{y}, \quad \mathbf{H}=\left(I_{z z}=\frac{m \ell^{2}}{3}\right) \dot{\theta} \mathbf{E}_{z} . \tag{6}
\end{equation*}
$$

We also note that

$$
\begin{equation*}
\left\|\mathbf{x}_{B}-\mathbf{x}_{A}\right\|=2 \ell \sqrt{2(1-\sin (\theta))} \tag{7}
\end{equation*}
$$

Figure 1: A rigid body of mass m is free to rotate about O. The rigid body is subject to a gravitational force and a force \mathbf{P} which has a constant magnitude.
(a) (5 Points) Establish expressions for the angular momentum \mathbf{H}_{O} and kinetic energy T of the rigid body when it is rotating about O.
(b) (5 Points) Draw a free-body diagram of the rigid body when it is rotating about O. For credit, give clear representations for the forces and moments in this diagram.
(c) (5 Points) Show that the following differential equation governs θ when the body is rotating about O :

$$
\begin{equation*}
\frac{4 m \ell^{2}}{3} \ddot{\theta}=-m g \ell \sin (\theta)+\frac{2 P \ell \cos (\theta)}{\sqrt{2(1-\sin (\theta))}} \tag{8}
\end{equation*}
$$

(d) (5 Points) Show that the force \mathbf{P} has a potential energy function

$$
\begin{equation*}
U_{P}=P\left\|\mathbf{x}_{B}-\mathbf{x}_{A}\right\| . \tag{9}
\end{equation*}
$$

(e) (5 Points) Starting from the work-energy theorem (5), prove that the total energy E of the rigid body is conserved. For credit, supply an expression for the total energy E.

Question 2
 A Falling Ladder (25 Points)

As shown in Figure 2, a ladder of mass m, moment of inertia relative to its center of mass C of $I_{z z}$ and length 2ℓ rests with one end A on a smooth horizontal surface and the other end B on a smooth vertical wall. The position vectors of these points have the representations:

$$
\begin{equation*}
\mathbf{x}_{A}=x_{A} \mathbf{E}_{x}=-2 \ell \cos (\theta) \mathbf{E}_{x}, \quad \mathbf{x}_{B}=y_{A} \mathbf{E}_{y}=2 \ell \sin (\theta) \mathbf{E}_{y}, \quad \overline{\mathbf{x}}=\mathbf{x}_{A}+\ell \mathbf{e}_{x} \tag{10}
\end{equation*}
$$

Initially, a stop is placed at A (see Figure 2(a)) to prevent the ladder from falling. At a later time, the stop is removed and the ladder falls (see Figure 2(b)).

Figure 2: (a) A ladder of mass m rests at an inclination angle $\theta=\theta_{0}$ with the help of a stop at A. (b) The stop is removed and the ladder falls.
(a) (5 Points) Suppose the ladder is in motion with A in contact with the ground and B in contact with the wall. Show that the acceleration of the center of mass of the ladder has the representation

$$
\begin{equation*}
\ddot{\mathbf{x}}_{C}=2 \ell\left(\ddot{\theta} \sin (\theta)+\dot{\theta}^{2} \cos (\theta)\right) \mathbf{E}_{x}+\ell \ddot{\theta} \mathbf{e}_{y}-\ell \dot{\theta}^{2} \mathbf{e}_{x} \tag{11}
\end{equation*}
$$

(b) (3 Points) Draw a free-body diagram of the ladder. Distinguish the cases where the ladder is stationary and when it is sliding.
(c) (5 Points) Assume that the ladder is stationary, inclined an angle $\theta=\theta_{0}$ and the stop at A is in place. Show that the forces acting on the ladder at A and B are

$$
\begin{equation*}
\mathbf{R}_{A}=\frac{m g}{2} \cot \left(\theta_{0}\right) \mathbf{E}_{x}+m g \mathbf{E}_{y}, \quad \mathbf{R}_{B}=-\frac{m g}{2} \cot \left(\theta_{0}\right) \mathbf{E}_{x} \tag{12}
\end{equation*}
$$

(d) (7 Points) The stop at A is removed and the ladder starts to move. Show that the differential equation governing the motion of the ladder is

$$
\begin{equation*}
\left(I_{z z}+?\right) \ddot{\theta}=-? ? \ell \cos (\theta) \tag{13}
\end{equation*}
$$

For credit, supply the missing terms.
(e) (5 Points) Using the work-energy theorem, prove that the total energy E of the ladder is conserved when it is in motion. Show that the angular velocity ω of the ladder at the instant before it becomes horizontal is

$$
\begin{equation*}
\omega=\sqrt{\frac{2 ? ? \ell \sin \left(\theta_{0}\right)}{\left(I_{z z}+m \ell^{2}\right)}} \tag{14}
\end{equation*}
$$

For full credit provide the missing term in the above equation and give an expression for E.

Question 3

A Rolling Rigid Body (25 Points)
As shown in Figure 3, a rigid body consists of a solid circular cylinder of radius r that is welded to the inner surface of a hollow circular cylinder of radius R. The combined body has a mass m and moment of inertia (relative to its center of mass C) $I_{z z}$ and is free to move on an inclined plane. The position vector of the geometric center A and the center of mass C have the representations

$$
\begin{equation*}
\mathbf{x}_{A}=x \mathbf{E}_{x}+y_{0} \mathbf{E}_{y}, \quad \overline{\mathbf{x}}=\mathbf{x}_{A}+h \mathbf{e}_{y}, \tag{15}
\end{equation*}
$$

where y_{0} and h are constants. The point P is the instantaneous point of contact of the body with the horizontal plane.

Figure 3: A rigid body of mass m moving on a rough inclined plane.
(a) (5 Points) With the help of the identity $\mathbf{v}_{2}=\mathbf{v}_{1}+\boldsymbol{\omega} \times\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)$ applied to two points on the rigid body, show that the slip speed v_{P} of the point P can be expressed as

$$
\begin{equation*}
v_{P}=\dot{x}+R \dot{\theta} \tag{16}
\end{equation*}
$$

where $\boldsymbol{\omega}=\dot{\theta} \mathbf{E}_{z}$ is the angular velocity of the rigid body.
(b) (3 Points) Draw a free-body diagram of the rigid body. Distinguish the cases where the body is rolling and where it is sliding. The coefficients of static and dynamic friction are μ_{s} and μ_{k}, respectively.
(c) ($5+7$ Points) Assume that the rigid body is rolling. Using a balance of linear momentum, show that

$$
\begin{equation*}
\mathbf{F}_{f}+\mathbf{N}=m\left(? ?+? ? ?+? ? ? ?+g\left(\cos (\beta) \mathbf{E}_{y}-\sin (\beta) \mathbf{E}_{x}\right)\right) \tag{17}
\end{equation*}
$$

Show that the equation governing the motion of the rolling body can be expressed as

$$
\begin{equation*}
\left(I_{z z}^{P}=I_{z z}+m R^{2}+m h^{2}+2 m h R \cos (\theta)\right) \ddot{\theta}=m R h \dot{\theta}^{2} \sin (\theta)+m g h ? ? ?+m g R ? ? ? ? . \tag{18}
\end{equation*}
$$

For full credit, supply the missing terms in (17) and (18).
(d) (5 Points) Suppose the rigid body is released from rest at time $t=0$ with $\theta(0)=0$. Assuming rolling, determine if the body will initially rotate clockwise or counterclockwise and whether the friction force initially points up or down the incline?

Question 4
Freezing up a Joint (25 Points)
As shown in Figure 4, a uniform thin rod of mass m_{1}, moment of inertia about O of $I_{O_{z z}}$, and length ℓ is free to rotate about a fixed point O. At the end of the rod, a disk of mass m_{2}, radius R and moment of inertia $I_{z z}=\frac{1}{2} m_{2} R^{2}$ about its center of mass A is free to rotate.

Figure 4: A uniform rod of length ℓ and mass m_{1} is free to rotate about a fixed point O. At the other end of the rod, a disk of mass m_{2} and radius R is free to rotate about the \mathbf{E}_{z} axis.

Relative to a fixed origin O, the center of mass C of the rod and the point A have the following position vectors:

$$
\begin{equation*}
\overline{\mathbf{x}}=\frac{\ell}{2} \mathbf{e}_{x}, \quad \mathbf{x}_{A}=\ell \mathbf{e}_{x} \tag{19}
\end{equation*}
$$

The angular momentum of the disk relative to its center of mass A is

$$
\begin{equation*}
\mathbf{H}_{\text {disk }}=\frac{1}{2} m_{2} R^{2} \omega \mathbf{E}_{z} \tag{20}
\end{equation*}
$$

where $\omega \mathbf{E}_{z}$ is the angular velocity of the disk. Note that $\omega \neq \dot{\theta}$.
(a) (7 Points) Show that the angular momentum \mathbf{H}_{O} of the system relative to O is

$$
\begin{equation*}
\mathbf{H}_{O}=\left(I_{O_{z z}}+m_{2} \ell^{2}\right) \dot{\theta} \mathbf{E}_{z}+\frac{1}{2} m_{2} R^{2} \omega \mathbf{E}_{z} \tag{21}
\end{equation*}
$$

Establish an expression for the kinetic energy T of the system.
(b) (3 Points) Draw a free-body diagram of the system.
(c) (5 Points) Show that equations of motion for the system are

$$
\begin{equation*}
\frac{1}{2} m_{2} R^{2} \dot{\omega}=0, \quad\left(I_{O_{z z}}+m_{2} \ell^{2}\right) \ddot{\theta}=-\left(\frac{m_{1} \ell}{2}+m_{2} \ell\right) g \sin (\theta) \tag{22}
\end{equation*}
$$

(d) (5 Points) Give an expression for the total energy E of the system and then, with the help of (22), show that $\dot{E}=0$.
(e) $\left(5\right.$ Points) Suppose the joint at A freezes when $\theta=0, \dot{\theta}=0$ and $\omega=\omega_{0}$. Determine the angular velocity of the system immediately following this event. Outline how you would compute the minimum ω_{0} needed so that the system can become horizontal (i.e., $\theta=\frac{\pi}{2}$) during the ensuing motion.

