Final Examination
 Monday December 10, 2012
 8:00 am to 11:00 am
 234 Hearst Gym

Closed Books and Closed Notes
 For Full Credit Answer All Four Questions

Useful Formulae

For all the corotational bases shown in the figures

$$
\begin{align*}
& \mathbf{e}_{x}=\cos (\theta) \mathbf{E}_{x}+\sin (\theta) \mathbf{E}_{y}, \\
& \mathbf{e}_{y}=\cos (\theta) \mathbf{E}_{y}-\sin (\theta) \mathbf{E}_{x} . \tag{1}
\end{align*}
$$

The following identity for the angular momentum of a rigid body relative to a point P will also be useful:

$$
\begin{equation*}
\mathbf{H}_{P}=\mathbf{H}+\left(\overline{\mathbf{x}}-\mathbf{x}_{P}\right) \times m \overline{\mathbf{v}} \tag{2}
\end{equation*}
$$

In computing components of moments, the following identity can be useful:

$$
\begin{equation*}
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{E}_{z}=\left(\mathbf{E}_{z} \times \mathbf{a}\right) \cdot \mathbf{b} \tag{3}
\end{equation*}
$$

Finally, recall that the work-energy theorem of a rigid body which is subject to a system of K forces and a pure moment \mathbf{M}_{p} is

$$
\begin{equation*}
\dot{T}=\sum_{i=1}^{K} \mathbf{F}_{i} \cdot \mathbf{v}_{i}+\mathbf{M}_{p} \cdot \boldsymbol{\omega} . \tag{4}
\end{equation*}
$$

Here, \mathbf{v}_{i} is the velocity vector of the point where the force \mathbf{F}_{i} is applied.

Question 1
 The Braking of a Rolling Rigid Body (30 Points)

As shown in Figure 1, a rigid cylinder of mass m and radius R is in motion on a rough incline. The moment of inertia (relative to its center of mass C) of the body is $I_{z z}$, and the position vector of C has the representation

$$
\begin{equation*}
\overline{\mathbf{x}}=x \mathbf{E}_{x}+h \mathbf{E}_{y}, \tag{5}
\end{equation*}
$$

where h is a constant. The point P in Figure 1 is the instantaneous point of contact.

Figure 1: A rigid body of mass m and radius R rolling under the influence of an applied torque $M_{a} \mathbf{E}_{z}$ on an inclined plane.
(a) (5 Points) Using the identity $\mathbf{v}_{2}=\mathbf{v}_{1}+\boldsymbol{\omega} \times\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)$ applied to two points on the rigid body, show that

$$
\begin{equation*}
\dot{x}+R \dot{\theta}=0 \tag{6}
\end{equation*}
$$

where $\boldsymbol{\omega}=\dot{\theta} \mathbf{E}_{z}$ is the angular velocity of the rigid body.
(b) (5 Points) Draw a free-body diagram of the rolling rigid body.
(c) (9 Points) Using balances of linear and angular momenta, show that

$$
\begin{align*}
\mathbf{F}_{f} & =-(?+m g \sin (\phi)) \mathbf{E}_{x}, \\
\mathbf{N} & =? ? \mathbf{E}_{y}, \\
\left(I_{z z}+m R^{2}\right) \ddot{\theta} & =? ? ?+? ? ? ? \tag{7}
\end{align*}
$$

For full credit, supply the missing terms.
(d) (5 Points) Starting from the work-energy theorem, prove that the change in total energy of the rolling rigid body is equal to the work done by the applied moment $M_{a} \mathbf{E}_{z}$. For full credit, provide an expression for the total energy E in terms of $m, h, x, I_{z z}, R, g, \phi$, and $\dot{\theta}$.
(e) (6 Points) Suppose the body is rolling down the incline and that the applied torque is used to brake the wheel (i.e., $M_{a}>0$ and $\dot{x}>0$). For a given inclination angle ϕ and coefficient of friction μ_{s} what is the maximum torque $M_{a}^{\max }$ that can be applied before the body will start to slide? For full credit, provide an expression for the maximum torque in terms of $m, I_{z z}, R$, g, ϕ, and μ_{s}.

Question 2
 Tipping Points (20 Points)

In the bottling plant for your favorite beverage, a conveyer belt transports aluminum cans up an incline. A critical component of the design process for the conveyer belt is to determine how fast it can accelerate/decelerate the cans without the cans tipping over. A can is modeled as a rigid body of mass m, moment of inertia relative to its center of mass C of $I_{z z}$ and having two contact points A and B with the conveyer belt. During its motion, a vertical gravitational force acts on the can and the center of mass C of the can has a position vector

$$
\begin{equation*}
\overline{\mathbf{x}}=x \mathbf{E}_{x}+\frac{H}{2} \mathbf{E}_{y} . \tag{8}
\end{equation*}
$$

Figure 2: A rigid body being transported with an acceleration $a \mathbf{E}_{x}$ by a conveyer belt.
(a) (5 Points) Establish expressions for the angular momentum \mathbf{H}_{O} and kinetic energy T for the rigid body assuming that it is not rotating.
(b) (5 Points) Supposing that friction forces $\mathbf{F}_{A}=F_{A} \mathbf{E}_{x}$ and $\mathbf{F}_{B}=F_{B} \mathbf{E}_{x}$ act at A and B respectively, draw a free-body diagram of the rigid body.
(c) (5 Points) Using balances of linear and angular momentum, assuming that both A and B are in contact with the conveyer belt, and that the acceleration of the conveyer belt is a, show that the normal forces acting at A and B are, respectively,

$$
\begin{align*}
& \mathbf{N}_{A}=\left(\frac{m g}{2} \cos (\phi)+\frac{H}{2 D}(m a+m g \sin (\phi))\right) \mathbf{E}_{y}, \tag{9}\\
& \mathbf{N}_{B}=\left(\frac{m g}{2} \cos (\phi)-\frac{H}{2 D}(m a+m g \sin (\phi))\right) \mathbf{E}_{y} .
\end{align*}
$$

(d) (5 Points) To prevent cans from tipping over either from by conveyer belt accelerating $(a>0)$ too quickly or decelerating $(a<0)$ too rapidly, show that

$$
\begin{equation*}
-\left(\frac{D}{H} \cos (\phi)+\sin (\phi)\right) \leq \frac{a}{g} \leq\left(\frac{D}{H} \cos (\phi)-\sin (\phi)\right) . \tag{10}
\end{equation*}
$$

Question 3
 A Particle Colliding with a Rigid Body (30 Points)

As shown in Figure 3, a particle of mass m_{1} is traveling with a velocity $-v_{0} \mathbf{E}_{y}$ when it collides with a stationary rigid body of mass m_{2}. The rigid body of m_{2} is hinged at its center of mass at O and has a moment of inertia relative to its center of mass of $I_{z z}$. The rigid body is suspended with the help of a torsional spring which exerts a moment $-K \theta$ on this body. Following the collision, the particle of mass m_{1} adheres to the rigid body and the composite body is free to rotate about O.

Figure 3: A particle of mass m_{1} collides with a body of mass m_{2}. The basis vectors $\left\{\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{E}_{z}\right\}$ corotate with the body and the point C is the center of mass of the composite body (of mass $m_{1}+m_{2}$) consisting of the rigid body and the particle.
(a) (5 Points) Assuming that the particle adheres to the end of the rod following the collision, show that the velocity vector $\overline{\mathbf{v}}$ of the center of mass C of the composite body following the collision has the representation

$$
\begin{equation*}
\overline{\mathbf{v}}=\left(\frac{m_{1}}{m_{1}+m_{2}}\right) L \dot{\theta} \mathbf{e}_{y} . \tag{11}
\end{equation*}
$$

(b) (5 Points) Assuming that the particle adheres to the end of the rod following the collision, show that the angular velocity $\boldsymbol{\omega}=\dot{\theta}_{0} \mathbf{E}_{z}$ of the composite body immediately following the collision is

$$
\begin{equation*}
\boldsymbol{\omega}=-\left(\frac{m_{1} L v_{0}}{I_{z z}+m_{1} L^{2}}\right) \mathbf{E}_{z} . \tag{12}
\end{equation*}
$$

(c) $(5+5+5+5$ Points) Consider the motion of the composite body following the collision.

1. Draw a free body diagram of the composite body.
2. Establish the differential equation governing the motion of the body:

$$
\begin{equation*}
? \ddot{\theta}=-K \theta+? ? \tag{13}
\end{equation*}
$$

For full credit supply the missing terms.
3. Establish an expression for the total energy of the composite body and show that the energy E is conserved.
4. Determine the minimum speed v_{0} required to ensure that the composite body will achieve a vertical orientation $\left(\theta=-90^{\circ}\right)$ following the impact.

Question 4
 Balancing a Wheel (20 Points)

As shown in Figure 4, a wheel of mass m_{1}, radius R, and moment of inertia relative to its center of mass C of $I_{z z}$ is spun about an axle through its center of mass. A mass m_{2} is placed on the wheel at a distance h away from the center of the wheel and this mass induces an imbalance. In the sequel, the inertia and mass of the shaft are ignorable.

Figure 4: An imbalanced system of mass $m_{1}+m_{2}$ which is free to rotate about the \mathbf{E}_{z} axis and is supported by bearings at A and B. An applied torque $T_{a} \mathbf{E}_{z}$ acts on the assembly.

The center of mass C of the wheel is stationary and coincident with the fixed point O shown in Figure 4. The angular momentum of the wheel relative to its center of mass C is

$$
\begin{equation*}
I_{z z} \dot{\theta} \mathbf{E}_{z} \tag{14}
\end{equation*}
$$

and the position vector of the particle of mass m_{2} relative to O is

$$
\begin{equation*}
\mathbf{x}_{2}=h \mathbf{e}_{x}+d \mathbf{E}_{z} . \tag{15}
\end{equation*}
$$

(a) (5 Points) Show that the angular momentum \mathbf{H}_{O} of the system relative to O has the representation

$$
\begin{equation*}
\mathbf{H}_{O}=\left(I_{z z}+m_{2} h^{2}\right) \dot{\theta} \mathbf{E}_{z}-m_{2} h d \dot{\theta} \mathbf{e}_{x} . \tag{16}
\end{equation*}
$$

(b) (5 Points) Draw a free-body diagram of the system and compute \mathbf{M}_{O}.
(c) (2 Points) Show that the angular speed of the shaft is governed by the equation

$$
\begin{equation*}
\left(I_{z z}+m_{2} h^{2}\right) \ddot{\theta}=T_{a}+m_{2} g h \sin (\theta) . \tag{17}
\end{equation*}
$$

(d) (6 Points) Assuming that $\dot{\theta}=\omega_{0}$ is constant, Verify that the following expressions for the bearing forces satisfy the balances of linear and angular momenta:

$$
\begin{align*}
& \mathbf{R}_{A}=\left(\frac{m_{1}+m_{2}}{2}\right) g \mathbf{E}_{x}+\left(\frac{m_{2} d h \omega_{0}^{2}}{2 L}\right) \mathbf{e}_{x}-\left(\frac{m_{2} d}{2 L}\right) g \mathbf{E}_{x}-\frac{m_{2} h}{2} \omega_{0}^{2} \mathbf{e}_{x}, \\
& \mathbf{R}_{B}=\left(\frac{m_{1}+m_{2}}{2}\right) g \mathbf{E}_{x}-\left(\frac{m_{2} d h \omega_{0}^{2}}{2 L}\right) \mathbf{e}_{x}+\left(\frac{m_{2} d}{2 L}\right) g \mathbf{E}_{x}-\frac{m_{2} h}{2} \omega_{0}^{2} \mathbf{e}_{x} . \tag{18}
\end{align*}
$$

(e) (2 Points) Give the position vector relative to O of the location on the wheel where you would place a bead of mass m_{2} to remove the imbalance.

Solution to Question 1

The Braking of a Rolling Rigid Body (30 Points)

Student Name:
ME 104: Engineering Mechanics II
SID:
Fall Semester 2012
Page 2 of 9

Student Name:
ME 104: Engineering Mechanics II
SID:
Fall Semester 2012
Page 3 of 9

Page 4 of 9

Question 2

Tipping Points (25 Points)

Student Name:
ME 104: Engineering Mechanics II
SID:
Fall Semester 2012
Page 5 of 9

Page 6 of 9

Question 3

A Particle Colliding with a Rigid Body (30 Points)

Student Name:
ME 104: Engineering Mechanics II
SID:
Fall Semester 2012
Page 7 of 9

Page 8 of 9

Question 4

Balancing a Wheel (20 Points)

Student Name: SID:
Page 9 of 9

ME 104: Engineering Mechanics II Fall Semester 2012

