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1A Let xn be a sequence of real numbers defined by x0 = 2 and

xn+1 = 1 +
1

xn
= g(xn).

Assume xn → x for some x ≥
√

2 as n → ∞. Don’t find x. Show that√
2 ≤ xn ≤ 2 and

|xn+1 − x| ≤
1

2
|xn − x|

for all n.

Solution:
If xn ≤ 2 then 1/xn ≥ 1/2 so xn+1 ≥ 3/2 ≥

√
2.

If xn ≥
√

2 then 1/xn ≤ 1/
√

2 so xn+1 ≤ 1+1/
√

2 ≤ 2 (since 1/
√

2 ≤ 0.8).
Since x0 = 2 we have

√
2 ≤ xn ≤ 2 for all n.

By continuity, x = 1 + 1/x so

xn+1 − x =
1

xn
− 1

x
=
x− xn
xxn

.

Since x ≥
√

2 and xn ≥
√

2 we have

|xn+1 − x| ≤
1

2
|xn − x|

for all n.

Rubric:
Invariance: 10 pts.
Contractivity: 10 pts.
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1B In floating point arithmetic, xn is approximated by yn satisfying

yn+1 = fl(xn+1) =

(
1 +

1

yn
(1 + δn)

)
(1 + δ′n)

where |δn| ≤ ε and |δ′n| ≤ ε. Assume that
√

2 ≤ yn ≤ 2. Show that

|yn+1 − x| ≤
1

2
|yn − x|+ 3ε+O(ε2)

for all n, and describe the behavior of yn as n→∞.

Solution:
Simplifying gives

yn+1 = 1 +
1

yn
+

1

yn
δn +

(
1 +

1

yn

)
δ′n +O(ε2),

and subtracting from x = 1 + 1/x gives

yn+1 − x =
x− yn
xyn

+ δ′n +
2

yn
δn +O(ε2).

Since x ≥
√

2 and yn ≥
√

2,

|yn+1 − x| ≤
1

2
|x− yn|+ (1 +

√
2)ε+O(ε2) ≤ 1

2
|x− yn|+ 3ε+O(ε2).

As n → ∞, the error yn − x will decrease until it reaches O(ε). When
|yn − x| = aε reaches its minimum, then a will satisfy

aε =
1

2
aε+ 3ε+O(ε2)

so a = 6. Thus the minimum possible error will be about 6ε, and will be
reached in about 50 steps.

Rubric:
Error bound: 10 pts.
Analysis: 10 pts.
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2A For an arbitrary function f , let H(t) be the quadratic polynomial inter-
polating f(1), f(2), and f ′(2) . Give a formula for the error f(t)−H(t) and
explain why each of the three factors in your formula is inevitable.

Solution:
The error is

f(t)−H(t) =
f ′′′(ξ)

3!
(t− 1)(t− 2)2

where
the third derivative ensures that the error vanishes when f is a quadratic

polynomial (and thus exactly reproduced by the uniqueness of polynomial
interpolation),

the polynomial (t−1)(t−2)2 ensures that the error vanishes at t = 1 and
t = 2, and its derivative also vanishes at t = 2,

and the 3! ensures that the error formula is correct when we try it on
f(t) = (t− 1)(t− 2)2 = t3 + · · ·, where H(t) = 0 and f ′′′ = 3!.

Rubric:
Error formula: 5 pts.
Explanation: 5 pts per factor.
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2B For f(t) = 1/t, build the divided difference table, find the Newton form of
H(t), and show that the error |f(t)−H(t)| ≤ 4/27 on the interval 0 ≤ t ≤ 1.

Solution:
The difference table is constructed with f ′(tj)/1! = −1/t2j in place of

f [tj, tj+1] whenever tj+1 = tj:

j tj f [tj] f [tj, tj+1] f [tj, tj+1, tj+2]
0 1 1 −1

2
1
4

1 2 1
2

−1
4

2 2 1
2

Thus reading along the top row gives the Newton form of H(t):

H(t) = 1− 1

2
(t− 1) +

1

4
(t− 1)(t− 2).

(Check that H(1) = 1, H(2) = 1/2 and H ′(2) = −1/4.)
Since |f ′′′(t)| = | − 6/t3| ≤ 6 on 1 ≤ t ≤ 2,

|f(t)−H(t)| ≤ 6

3!
|(t− 1)(t− 2)2|.

The polynomial (t− 1)(t− 2)2 has an extremum at t = 2 and another at the
point where (t− 2)2 + 2(t− 1)(t− 2) = 0 or t = 4/3. At t = 4/3 the value is
4/27 so the error is bounded by 4/27 on the interval 1 ≤ t ≤ 2.

Rubric:
Difference table: 5 pts.
Newton form: 5 pts.
Error bound: 10 pts.
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3 Find constants a, b and c such that the numerical integration rule∫ 1

−1
f(t) dt = af(−1) + bf(0) + cf(1)

is exact whenever f is a quadratic polynomial. Show that the error is
bounded by M3/12 whenever the third derivative |f ′′′(t)| ≤M3 for |t| ≤ 1.

Solution:
By Lagrange interpolation,

a =
∫ 1

−1
L−1(t)dt =

∫ 1

−1

(t− 0)(t− 1)

(−1− 0)(−1− 1)
dt =

1

3

and

b =
∫ 1

−1
L0(t)dt =

∫ 1

−1

(t+ 1)(t− 1)

(0 + 1)(0− 1)
dt =

4

3
.

Since the weights must sum to 2, we have also

c =
1

3
.

Using the error formula for polynomial interpolation, the error is bounded
by

|
∫ 1

−1

f ′′′(ξ)

3!
(t+ 1)(t− 0)(t− 1)dt| ≤ M3

6

∫ 1

−1
|(t+ 1)(t− 0)(t− 1)|dt.

Note that the integrand changes sign on the interval of integration. Hence
the error is bounded by

M3

6
2
∫ 1

0
t− t3dt =

M3

12
.

Rubric:
Weights: 10 pts.
Error bound: 10 pts.
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\vskip 48pt 
\noindent
{\specialgradegrid}

\newpage
\noindent
{\bf 1A}
Let $x_n$ be a sequence of real numbers defined by 
$x_0=2$ and 
\[
x_{n+1} = 1  + \frac{1}{x_n} = g(x_n).
\]
Assume $x_n \rightarrow x$ for some $x \ge \sqrt{2}$ as $n \rightarrow \infty$. 
Don't find $x$.
Show that $\sqrt{2} \le x_n \le 2$ and
\[
	|x_{n+1}-x| \le \frac{1}{2} |x_n-x|
\]
for all $n$.

\vspace{0.25in}
\hrule
\vspace{0.25in}
\noindent
{\bf Solution:}

If $x_n \le 2$ then $1/x_n \ge 1/2$ so $x_{n+1} \ge 3/2 \ge \sqrt{2}$.

If $x_n \ge \sqrt{2}$ then $1/x_n \le 1/\sqrt{2}$ so $x_{n+1} \le 1 + 1 / \sqrt{2} \le 2$
(since $1/\sqrt{2} \le 0.8$).

Since $x_0=2$ we have $\sqrt{2} \le x_n \le 2$ for all $n$.

By continuity, $x = 1 + 1/x$ so 
\[
	x_{n+1} - x = \frac{1}{x_n} - \frac{1}{x} = \frac{x-x_n}{x x_n}.
\]

Since $x \ge \sqrt{2}$ and $x_n \ge \sqrt{2}$ we have
\[
|x_{n+1} - x|
\le
\frac{1}{2}
|x_n - x|
\]
for all $n$.

\vspace{0.25in}
\hrule
\vspace{0.25in}
\noindent
{\bf Rubric:}

Invariance: 10 pts.

Contractivity: 10 pts.


\newpage
\noindent
{\bf 1B}
In floating point arithmetic,
$x_n$ is approximated by 
$y_n$ satisfying
\[
y_{n+1}
=
\mbox{fl}(x_{n+1})
=
\left( 
1
+
\frac{1}{y_n} (1+\delta_n) 
\right) 
(1+ \delta_n^\prime) 
\]
where 
$|\delta_n| \le \epsilon$
and
$|\delta_n^\prime| \le \epsilon$.
Assume that $\sqrt{2} \le y_n \le 2$.
Show that
\[
	| y_{n+1} - x| \le \frac{1}{2} | y_n - x | + 3 \epsilon + O(\epsilon^2)
\]
for all $n$,
and 
describe the behavior of $y_n$ as $n \rightarrow \infty$.

\vspace{0.25in}
\hrule
\vspace{0.25in}
\noindent
{\bf Solution:}

Simplifying gives
\[
y_{n+1}
=
1
+
\frac{1}{y_n} 
+
\frac{1}{y_n}
\delta_n
+
\left( 1+\frac{1}{y_n} \right)
\delta_n^\prime
+
O(\epsilon^2),
\]
and subtracting from $x=1+1/x$ gives
\[
	y_{n+1}-x = \frac{x-y_n}{x y_n} + \delta_n^\prime + \frac{2}{y_n} \delta_n + O(\epsilon^2).
\]
Since $x \ge \sqrt{2}$ and $y_n \ge \sqrt{2}$,
\[
	|y_{n+1}-x| \le \frac{1}{2} |x-y_n| + ( 1 + \sqrt{2} )  \epsilon + O(\epsilon^2)
	\le \frac{1}{2} |x-y_n| + 3  \epsilon + O(\epsilon^2).
\]
As $n \rightarrow \infty$, the error $y_n-x$ will decrease until it reaches $O(\epsilon)$.
When $|y_n-x|=a \epsilon$ reaches its minimum, 
then $a$ will satisfy
\[
	a \epsilon = \frac{1}{2} a \epsilon + 3 \epsilon + O(\epsilon^2)
\]
so $a= 6$. Thus the minimum possible error will be about $6\epsilon$,
and will be reached in about 50 steps.

\vspace{0.25in}
\hrule
\vspace{0.25in}
\noindent
{\bf Rubric:}

Error bound: 10 pts.

Analysis: 10 pts.

\newpage
\noindent
{\bf 2A}
For an arbitrary function $f$,
let
$H(t)$ 
be the quadratic polynomial 
interpolating
$f(1)$, 
$f(2)$, and $f^\prime(2)$ .
Give a formula for the error $f(t)-H(t)$
and explain why each of the three factors 
in your formula is inevitable.

\vspace{0.25in}
\hrule
\vspace{0.25in}
\noindent
{\bf Solution:}

The error is 
\[
	f(t) - H(t) = \frac{f^{\prime\prime\prime}(\xi)}{3!} (t-1)(t-2)^2
\]
where

the third derivative ensures that the error vanishes when $f$ is a quadratic polynomial
(and thus exactly reproduced by the uniqueness of polynomial interpolation),

the polynomial $(t-1)(t-2)^2$ ensures that the error vanishes at $t=1$ and $t=2$,
and its derivative also vanishes at $t=2$,

and the $3!$ ensures that the error formula is correct 
when we try it on $f(t) = (t-1)(t-2)^2 = t^3 + \cdots$,
where $H(t) = 0$ and $f^{\prime\prime\prime} = 3!$.

\vspace{0.25in}
\hrule
\vspace{0.25in}
\noindent
{\bf Rubric:}

Error formula: 5 pts.

Explanation: 5 pts per factor.



\newpage
\noindent
{\bf 2B}
For 
$f(t)=1/ t $,
build the divided difference table,
find the Newton form of $H(t)$,
and show that the error $| f(t)-H(t)| \le 4/27$ on the interval $0 \le t \le 1$.

\vspace{0.25in}
\hrule
\vspace{0.25in}
\noindent
{\bf Solution:}

The difference table is constructed with
$f^\prime(t_j) / 1! = -1 / t_j^2 $
in place of
$f[t_j,t_{j+1}] $
whenever
$t_{j+1}=t_j$:
\[
\begin{array}{c c c c c}
j       &       t_j     & 	f[t_j]        		& f[t_j,t_{j+1}]        & f[t_j,t_{j+1},t_{j+2}] \\
0       &       1       &       	1       	&       \frac{-1}{2}       &       \frac{1}{4}  \\
1       &       2       &       \frac{1}{2}      	&       \frac{-1}{4}       &       \\
2       &       2       &       \frac{1}{2}       	&       		&               \\
\end{array}
\]
Thus reading along the top row gives the Newton form of $H(t)$:
\[
	H(t) = 1 -\frac{1}{2} ( t-1) + \frac{1}{4} (t-1) (t-2).
\]
(Check that $H(1) = 1$, $H(2) = 1/2$ and $H^\prime(2) = -1/4$.)

Since $| f^{\prime\prime\prime}(t) | = |-6/t^3 | \le 6$ on $1 \le t \le 2$,
\[
	|f(t) - H(t) | \le \frac{6}{3!} | (t-1)(t-2)^2|.
\]
The polynomial $(t-1)(t-2)^2$ has an extremum at $t=2$ and another at the point where
$(t-2)^2+2(t-1)(t-2)=0$ or $t=4/3$. 
At $t=4/3$ the value is $4/27$ so the error is bounded by $4/27$
on the interval $1 \le t \le 2$.


\vspace{0.25in}
\hrule
\vspace{0.25in}
\noindent
{\bf Rubric:}

Difference table: 5 pts.

Newton form: 5 pts.

Error bound: 10 pts.

\newpage
\noindent
{\bf 3}
Find constants $a$, $b$ and $c$ such that the numerical integration rule
\[
\int_{-1}^1 f(t) \ dt = a f(-1) + b f(0) + c f(1)
\]
is exact whenever $f$ is a quadratic polynomial.
Show that the error 
is bounded by $ M_3 / 12$ whenever
the third derivative $|f^{\prime\prime\prime}(t)| \le M_3$ for $|t| \le 1$.

\vspace{0.25in}
\hrule
\vspace{0.25in}
\noindent
{\bf Solution:}

By Lagrange interpolation,
\[
	a = \int_{-1}^1 L_{-1}(t) dt = \int_{-1}^1 \frac{(t-0)(t-1)}{(-1-0)(-1-1)} dt = \frac{1}{3}
\]
and 
\[
	b = \int_{-1}^1 L_{0}(t) dt = \int_{-1}^1 \frac{(t+1)(t-1)}{(0+1)(0-1)} dt = \frac{4}{3}.
\]
Since the weights must sum to 2,
we have also
\[
	c = \frac{1}{3}.
\]

Using the error formula for polynomial interpolation,
the error is bounded by
\[
	|\int_{-1}^1 \frac{f^{\prime\prime\prime}(\xi)}{3!} (t+1)(t-0)(t-1) dt|
	\le
	\frac{M_3}{6}
	\int_{-1}^1 | (t+1)(t-0)(t-1) | dt.
\]
Note that the integrand changes sign on the interval of integration.
Hence the error is bounded by 
\[
	\frac{M_3}{6} 2 \int_0^1 t-t^3 dt = \frac{M_3}{12}.
\]

\vspace{0.25in}
\hrule
\vspace{0.25in}
\noindent
{\bf Rubric:}

Weights: 10 pts.

Error bound: 10 pts.
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