Stat153 Midterm Exam 1 Solutions (October 7, 2010)

1. (Stationarity)
(a) The mean function of this time series is $\mathbb{E} X_{t}=-2 t$, which varies with t. Thus, the series is not stationary.
The autocovariance is

$$
\begin{aligned}
\gamma(h) & =\operatorname{Cov}\left(-2 t+W_{t}+0.5 W_{t-1},-2(t+h)+W_{t+h}+0.5 W_{t+h-1}\right) \\
& = \begin{cases}1.25 \sigma^{2} & \text { if } h=0 \\
0.5 \sigma^{2} & \text { if }|h|=1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

(b) The differenced time series $\left\{Y_{t}\right\}$ is given by

$$
Y_{t}=-2 t+W_{t}+0.5 W_{t-1}-\left(-2(t-1)+W_{t-1}+0.5 W_{t-2}\right)=W_{t}-0.5 W_{t-1}-0.5 W_{t-2}-2
$$

This has mean function $\mathbb{E} Y_{t}=-2$, which is constant. Also, the autocovariance is

$$
\begin{aligned}
\operatorname{Cov}\left(Y_{t}, Y_{t+h}\right)= & \operatorname{Cov}\left(W_{t}-0.5 W_{t-1}-0.5 W_{t-2}-2, W_{t+h}-0.5 W_{t+h-1}-0.5 W_{t+h-2}-2\right) \\
= & \operatorname{Cov}\left(W_{t}, W_{t+h}\right)-0.5 \operatorname{Cov}\left(W_{t}, W_{t+h-1}\right)-0.5 \operatorname{Cov}\left(W_{t}, W_{t+h-2}\right) \\
& -0.5 \operatorname{Cov}\left(W_{t-1}, W_{t+h}\right)+0.25 \operatorname{Cov}\left(W_{t-1}, W_{t+h-1}\right)+0.25 \operatorname{Cov}\left(W_{t-1}, W_{t+h-2}\right) \\
& -0.5 \operatorname{Cov}\left(W_{t-2}, W_{t+h}\right)+0.25 \operatorname{Cov}\left(W_{t-2}, W_{t+h-1}\right)+0.25 \operatorname{Cov}\left(W_{t-2}, W_{t+h-2}\right) \\
= & \begin{cases}1.25 \sigma^{2} & \text { if } h=0, \\
-0.25 \sigma^{2} & \text { if }|h|=1, \\
-0.5 \sigma^{2} & \text { if }|h|=2, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Since the mean function is constant and the autocovariance depends only on the lag h, the series is stationary.
2. $(\mathrm{ACF}, \mathrm{PACF})$
(a) The autocovariance function $\gamma(h)$ of an MA(q) drops to zero for $h>q$; the PACF $\phi_{h h}$ of an $\operatorname{AR}(\mathrm{p})$ drops to zero for $h>p$. In this case, since the PACF drops to zero for $h>1$, we would tentatively propose an $\mathrm{AR}(1)$ model.
(b) The variance $\operatorname{Var}\left(X_{t}\right)=\gamma(0) \approx 2.9$.
3. (Causality) Consider the following ARMA model

$$
X_{t}=X_{t-1}-0.25 X_{t-2}+W_{t}-0.25 W_{t-1}
$$

where $W_{t} \sim N(0,1)$.
(a) The AR polynomial is $1-z+0.25 z^{2}$, which has both roots at 2 . Since the roots are outside the unit circle in the complex plane, this $\operatorname{ARMA}(2,1)$ model is causal.
(b) To compute the $\mathrm{MA}(\infty)$ representation, we need to solve

$$
\left(\psi_{0}+\psi_{1} z+\psi_{2} z^{2}+\cdots\right)\left(1-z+0.25 z^{2}\right)=(1-0.25 z)
$$

for ψ_{i}. This is a linear difference equation. Since the AR polynomial has both roots at $z=2$, the general form of the solution is

$$
\psi_{j}=\left(c_{1}+c_{2} j\right) 2^{-j}
$$

for some $c_{1}, c_{2} \in \mathbb{R}$. We use the initial conditions,

$$
\psi_{0}=1, \quad \psi_{1}-\psi_{0}=-0.25
$$

to find c_{1} and c_{2}. These equations imply $c_{1}=1, c_{2}=0.5$. Thus, the $\operatorname{MA}(\infty)$ representation is

$$
X_{t}=\sum_{j=0}^{\infty}(1+0.5 j) 2^{-j} W_{t-j}
$$

4. (Invertibility)
(a) The MA polynomial is $1-0.25 z$, which has a root at $z_{1}=4$. Since $\left|z_{1}\right|>1$, this $\operatorname{ARMA}(2,1)$ model is invertible.
(b) To compute the $\mathrm{AR}(\infty)$ representation, we need to solve

$$
(1-0.25 z)\left(\pi_{0}+\pi_{1} z+\pi_{2} z^{2}+\cdots\right)=\left(1-z+0.25 z^{2}\right)
$$

for π_{i}. The general form of the solution for the homogeneous difference equation is

$$
\pi_{j}=c 4^{-j}
$$

We use the initial conditions

$$
\begin{aligned}
\pi_{0} & =1 \\
\pi_{1}-0.25 \pi_{0} & =-1 \\
\pi_{2}-0.25 \pi_{1} & =0.25
\end{aligned}
$$

to find c and the initial values of the sequence. These equations imply

$$
\begin{aligned}
& \pi_{0}=1 \\
& \pi_{1}=-0.75, \\
& \pi_{j}=4^{-j} \quad \text { for } j \geq 2
\end{aligned}
$$

Thus, the $\operatorname{AR}(\infty)$ representation is

$$
W_{t}=X_{t}-0.75 X_{t-1}+\sum_{j=2}^{\infty} 4^{-j} X_{t-j}
$$

5. (Forecasting)
(a) Since we have an $\operatorname{AR}(3)$ model, the best linear predictor of X_{T+1} is given by

$$
\begin{aligned}
P\left(X_{T+1} \mid X_{T}, X_{T-1}, X_{T-2}\right)=X_{T+1}^{T}=\tilde{X}_{T+1} & =\phi_{1} X_{T}+\phi_{2} X_{T-1}+\phi_{3} X_{T-2} \\
& =0.2(-0.74)-0.2(-3.5)+0.6(3.0) \\
& =2.352
\end{aligned}
$$

(b) Since $X_{T+1}^{T}=\tilde{X}_{T+1}$ for an $\operatorname{AR}(\mathrm{p})$ model with $p \leq T$, we know that

$$
P_{T+1}^{T}=\sigma_{w}^{2} \psi_{0}^{2}=\sigma_{w}^{2}=1
$$

Since W_{t} is Gaussian, the conditional distribution of X_{T+1} given X_{1}, \ldots, X_{T} is $N\left(X_{T+1}^{T}, 1\right)$. So a 95% confidence interval for X_{T+1} is

$$
2.352 \pm 1.96
$$

6. (Estimation)
(a) The Yule-Walker equations are $\Gamma_{2} \phi=\gamma_{2}$ and $\sigma^{2}=\gamma(0)-\gamma_{2}^{\prime} \phi$. In this case,

$$
\begin{aligned}
\left(\begin{array}{cc}
5 & 0 \\
0 & 5
\end{array}\right)\binom{\hat{\phi}_{1}}{\hat{\phi}_{2}} & =\binom{0}{2.5} \\
\hat{\phi}_{1}=0, \quad \hat{\phi}_{2} & =0.5, \quad \text { and } \\
\hat{\sigma}_{w}^{2}=5-\left(\begin{array}{ll}
0 & 2.5
\end{array}\right) \hat{\phi} & =3.75
\end{aligned}
$$

(b) The asymptotic distribution of $\hat{\phi}=\left(\hat{\phi}_{1}, \hat{\phi}_{2}\right)^{\prime}$ is

$$
N\left(\phi, \frac{\sigma_{w}^{2}}{T} \Gamma_{2}^{-1}\right)
$$

Thus, an approximate 95% confidence interval for ϕ_{2} is given by

$$
\hat{\phi}_{2} \pm 1.96 \sqrt{\frac{\hat{\sigma}_{w}^{2}}{T}\left(\hat{\Gamma}_{2}^{-1}\right)_{22}}=0.5 \pm 1.96 \sqrt{\frac{3.75}{1500 \times 5}} \approx 0.5 \pm 0.044
$$

