OVERALL

Average $=130$
SD $=40$
UNIVERSITY OF CALIFORNIA, BERKELEY
MECHANICAL ENGINEERING
ME106 Fluid Mechanics
NAME
KEY
1st Test, S19 Prof S. Morris

1. (100) In a certain plane flow, the fluid velocity $\mathbf{V}=v_{x} \mathbf{i}+v_{y} \mathbf{j}$ is given by

$$
\begin{equation*}
v_{x}=k y x^{2}, \quad v_{y}=-k x y^{2}, \tag{1.1}
\end{equation*}
$$

where $k>0$ is constant.
10 (a) Show that (1.1) satisfies the no-slip condition on $x=0$, and also on $y=0$.
30 (b) Find, and sketch, the streamlines.
30 (c) Calculate the components a_{x} and a_{y} of the fluid acceleration. On your sketch in part (b), show the position vector \mathbf{r} and the fluid acceleration \mathbf{a}.

30 (d) In an arbitrary flow of a Newtonian fluid, the shear stress τ exerted by the fluid in the x-direction on a surface whose normal is in the $O y$ direction is given by

$$
\begin{equation*}
\tau=\mu\left(\frac{\partial v_{x}}{\partial y}+\frac{\partial v_{y}}{\partial x}\right) \tag{1.2}
\end{equation*}
$$

Using (1.2), find the x-component of force exerted by the flow (1.1) on the length $0<x<L$ of the upper side of the boundary $y=0$. Show that your result is dimensionally correct.*

Solution

Average $=75$
(a) At $x=0, v_{y}=0$; at $y=0, v_{x}=0$.
(b)
+5 general eqn, +5 plug in V

$$
\frac{\mathrm{d} x}{v_{x}}=\frac{\mathrm{d} y}{v_{y}} \Rightarrow \frac{\mathrm{~d} x}{k y x^{2}}=-\frac{\mathrm{d} y}{k x y^{2}}
$$

By cancelling a common factor of $k x y$,

$$
\begin{array}{r}
+10 \text { simplify and solv } \\
\frac{\mathrm{d} x}{x}=-\frac{\mathrm{d} y}{y} \Rightarrow y \mathrm{~d} x+x \mathrm{~d} y=0 \Rightarrow \mathrm{~d}(x y)=0
\end{array}
$$

Streamlines are rectangular hyperpolae $x y=$ const.

[^0](c) Method 1. Direct calculation, using definition of fluid acceleration at point $\{x, y\}$ as the acceleration of the fluid particle currently at that point. (See point allocation for Method 2)
Let $X(t), Y(t)$ be the coordinates of a fluid particle. The velocity of this particle is, by (1.1).
\[

$$
\begin{equation*}
\dot{X}=k Y X^{2}, \quad \dot{Y}=-k X Y^{2} \tag{1.3a,b}
\end{equation*}
$$

\]

Its acceleration has the x-component

$$
\begin{equation*}
\ddot{X}(t)=k\left\{2 X Y \dot{X}+X^{2} \dot{Y}\right\},=k^{2}\left\{2 X^{3} Y^{2}-X^{3} Y^{2}\right\},=k^{2} X^{3} Y^{2} . \tag{1.4a,b,c}
\end{equation*}
$$

Eq.(1.4a) follows by using the product rule; (1.4b) follows from (1.4a) by substituting for \dot{X}, \dot{Y}.
The y-component is

$$
\begin{equation*}
\ddot{Y}(t)=-k\left\{\dot{X} Y^{2}+2 X Y \dot{Y}\right\},=-k^{2}\left\{X^{2} Y^{3}-2 X^{2} Y^{3},=k^{2} X^{2} Y^{3} .\right. \tag{1.5a,b,c}
\end{equation*}
$$

The acceleration of the particle is :

$$
\begin{equation*}
\mathbf{a}=k^{2} X^{2} Y^{2}\{\mathbf{i} X+\mathbf{j} Y\}: \tag{1.6}
\end{equation*}
$$

at point $X \mathbf{i}+Y \mathbf{j}$. Because this holds for all X and Y, the acceleration is given in the spatial description by

$$
\mathbf{a}(x, t)=k^{2} x^{2} y^{2}\{\mathbf{i} x+\mathbf{j} y\}
$$

Method 2. Equivalent procedure, expressed in terms of the material derivative.

$$
\begin{aligned}
\mathbf{a}=\frac{\mathrm{d} \mathbf{V}}{\mathrm{~d} t} & =\frac{\partial \mathbf{V}}{\partial t}+(\mathbf{V} \cdot \nabla) \mathbf{V}, \quad+\mathbf{5} \text { general equation } \\
& =\frac{\partial \mathbf{V}}{\partial t}+v_{x} \frac{\partial \mathbf{V}}{\partial x}+v_{y} \frac{\partial \mathbf{V}}{\partial y}+v_{z} \frac{\partial \mathbf{V}}{\partial z} \mathbf{+ 1 0} \text { expanded convective term } \\
& =0+k y x^{2} \frac{\partial \mathbf{V}}{\partial x}-k x y^{2} \frac{\partial \mathbf{V}}{\partial y} \\
& =k y x^{2}\left\{2 k x y \mathbf{i}-k y^{2} \mathbf{j}\right\}-k x y^{2}\left\{k x^{2} \mathbf{i}-2 k x y \mathbf{j}\right\} \\
& =k^{2}\left\{x^{3} y^{2} \mathbf{i}+x^{2} y^{3} \mathbf{j}\right\}, \quad \mathbf{+ 5} \text { correct answer }
\end{aligned}
$$

as by method 1 .
Sketch. Must show that a \| r. +10
(d) For the flow (1.1)

$$
\frac{\partial v_{x}}{\partial y}=k x^{2}, \quad \frac{\partial v_{y}}{\partial x}=-k y^{2}
$$

On $y=0$

$$
\tau=\mu k x^{2} . \quad \mathbf{+ 1 0} \text { shear }(\mathbf{+ 5 / 1 0} \text { is not evaluated at } \mathbf{y}=\mathbf{0})
$$

Resultant force in x-direction on strip $0<x<L$:

$$
F_{x}=\int_{0}^{L} \tau \mathrm{~d} x=\frac{1}{3} \mu k L^{3} \quad+\mathbf{1 0} \text { force }
$$

Dimensions: $[k]=L^{-2} T^{-1}$ (from expression for \mathbf{V}), $[\mu]=M L^{-1} T^{-1} \Rightarrow\left[\mu k L^{3}\right]=M T^{-2}=[F / L]$. dimensionally consistent.

Average $=60$
 SD = $\mathbf{3 0}$

2. (100) A fixed mass of gas is compressed by pushing the piston inwards: the length $L(t)$ of the gas column decreases with time. The flow is one-dimensional with acceleration $\mathbf{a}=a_{x} \mathbf{i} ; a_{x}=\ddot{L} x / L$. where $\ddot{L}=\mathrm{d}^{2} L / \mathrm{d} t^{2}$. Because $a_{x} \neq 0$, the Euler equation $\rho a_{x}=-\frac{\partial p}{\partial x}$ (negligible gravity) requires there to be a pressure gradient. As a result, the density ρ varies in x from its value $\rho_{0}(t)$ at $x=0$ to $\rho_{L}(t)$ at $x=L$.
40 (a) If $\left|\rho_{L}-\rho_{0}\right| \ll \rho_{0}$, density can, to a first approximation, be taken as uniform in x. Assuming this to be so, find $p(x, t)$ as a function of $p_{0}(t)=p(0, t), \rho_{0}(t), \ddot{L}, L$ and x. Show that your answer is dimensionally correct.
50 (b) Using the result of part (a), and Taylor's theorem, find $\rho_{L}-\rho_{0}$ as a function of ρ_{0}, L, \ddot{L} and the (isentropic) bulk modulus. $K_{S}=\rho\left(\frac{\partial p}{\partial \rho}\right)_{S}$.
10 (c) Estimate $\left(\rho_{L}-\rho_{0}\right) / \rho_{0}$ for a car engine idling with angular velocity $\omega=10^{2} \mathrm{rad} / \mathrm{s}, \rho_{0}=1 \mathrm{~kg} / \mathrm{m}^{3}$, $K_{S}=10^{5} \mathrm{~Pa}$ when $L=0.1 \mathrm{~m}$: assume that $\ddot{L}=\omega^{2} L$.

Solution

(a) Euler equation: $\frac{\partial p}{\partial x}=-\rho(0, t) \frac{\ddot{L}}{L} x, \quad \quad+30$ plug in for a_x integrate

$$
\Rightarrow p(x, t)=p(0, t)-\rho(0, t) \frac{\ddot{L}}{2 L} x^{2}
$$

Dimensions
L.H.S. : $[p]=F L^{-2}=M L^{-1} T^{-2}$.
R.H.S. : $\left[\rho \ddot{L} x^{2} / L\right]=M L^{-3} L^{3} T^{-2} L^{-1},=M L^{-1} T^{-2}$. Consistent.
(b) Taylor's theorem: $\rho(L, t)=\rho(0, t)+\left.\left\{p_{L}(t)-p_{0}(t)\right\}\left(\frac{\partial p}{\partial \rho}\right)_{S}\right|_{0} ^{\text {\rho and } \mathbf{p} \text { flipped }} \begin{gathered}\text { +10 Taylor's or some other } \\ \text { method to get this eqn } \\ \text { h.o.t. }\end{gathered}$

$$
\begin{equation*}
\Rightarrow \frac{\rho_{L}-\rho_{0}}{\rho_{0}}=\frac{p_{L}-p_{0}}{\left(K_{S}\right)_{0}} . \quad \mathbf{+ 2 0} \tag{2.3}
\end{equation*}
$$

By substituting into (2.3) the result of evaluating (2.1) at $x=L$,

$$
\begin{equation*}
\frac{\rho_{L}-\rho_{0}}{\rho_{0}}=-\rho_{0} \frac{L \ddot{L}}{2\left(K_{S}\right)_{0}} \tag{2.4}
\end{equation*}
$$

(c) For the numbers given,

$$
\left|\frac{\rho_{L}-\rho_{0}}{\rho_{0}}\right|=\rho_{0} \omega^{2} \frac{L^{2}}{2\left(K_{S}\right)_{0}},=5 \times 10^{-4} . \quad \mathbf{+ 1 0}
$$

[^0]: * Because this is a plane flow, your answer will have dimensions of force per unit length.

