
UNIVERSITY OF CALIFORNIA, BERKELEY
MECHANICAL ENGINEERING
ME106 Fluid Mechanics NAME
1st Test, S19 Prof S. Morris

1. (100) In a certain plane flow, the fluid velocity V = vxi+ vyj is given by

vx = kyx2, vy = −kxy2, (1.1)

where k > 0 is constant.

(a) Show that (1.1) satisfies the no–slip condition on x = 0, and also on y = 0.

(b) Find, and sketch, the streamlines.

(c) Calculate the components ax and ay of the fluid acceleration. On your sketch in part (b), show the
position vector r and the fluid acceleration a.

(d) In an arbitrary flow of a Newtonian fluid, the shear stress τ exerted by the fluid in the x–direction
on a surface whose normal is in the Oy direction is given by

τ = µ
(∂vx
∂y

+
∂vy
∂x

)

. (1.2)

Using (1.2), find the x–component of force exerted by the flow (1.1) on the length 0 < x < L of the
upper side of the boundary y = 0. Show that your result is dimensionally correct.*

Solution

(a) At x = 0, vy = 0; at y = 0, vx = 0.

(b)
dx

vx
=

dy

vy
⇒

dx

kyx2
= −

dy

kxy2
.

By cancelling a common factor of kxy,

dx

x
= −

dy

y
⇒ ydx+ xdy = 0 ⇒ d(xy) = 0

Streamlines are rectangular hyperpolae xy = const.

x

y

* Because this is a plane flow, your answer will have dimensions of force per unit length.
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(c) Method 1. Direct calculation, using definition of fluid acceleration at point {x, y} as the acceleration
of the fluid particle currently at that point.

Let X(t), Y (t) be the coordinates of a fluid particle. The velocity of this particle is, by (1.1).

Ẋ = kY X2, Ẏ = −kXY 2. (1.3a, b)

Its acceleration has the x–component

Ẍ(t) = k{2XY Ẋ +X2Ẏ },= k2{2X3Y 2 −X3Y 2},= k2X3Y 2. (1.4a, b, c)

Eq.(1.4a) follows by using the product rule; (1.4b) follows from (1.4a) by substituting for Ẋ, Ẏ .

The y–component is

Ÿ (t) = −k{ẊY 2 + 2XY Ẏ },= −k2{X2Y 3 − 2X2Y 3,= k2X2Y 3. (1.5a, b, c)

The acceleration of the particle is :

a = k2X2Y 2{iX + jY } : (1.6)

at point Xi+Y j. Because this holds for all X and Y , the acceleration is given in the spatial description
by

a(x, t) = k2x2y2{ix+ jy}.

Method 2. Equivalent procedure, expressed in terms of the material derivative.

a =
dV

dt
=
∂V

∂t
+ (V · ∇)V,

=
∂V

∂t
+ vx

∂V

∂x
+ vy

∂V

∂y
+ vz

∂V

∂z

=0 + kyx2
∂V

∂x
− kxy2

∂V

∂y

=kyx2{2kxyi− ky2j} − kxy2{kx2i− 2kxyj}

=k2{x3y2i+ x2y3j},

as by method 1.

Sketch. Must show that a ‖ r.

(d) For the flow (1.1)
∂vx
∂y

= kx2,
∂vy
∂x

= −ky2

On y = 0
τ = µkx2.

Resultant force in x–direction on strip 0 < x < L:

Fx =

∫ L

0

τ dx =
1

3
µkL3

Dimensions: [k] = L−2T−1 (from expression for V), [µ] = ML−1T−1 ⇒ [µkL3] = MT−2 = [F/L].
dimensionally consistent.
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2. (100) A fixed mass of gas is compressed by pushing the piston inwards: the length L(t) of the gas
column decreases with time. The flow is one–dimensional with acceleration a = axi; ax = L̈ x/L. where
L̈ = d2L/dt2. Because ax 6= 0, the Euler equation ρax = − ∂p

∂x
(negligible gravity) requires there to be a

pressure gradient. As a result, the density ρ varies in x from its value ρ0(t) at x = 0 to ρL(t) at x = L.

(a) If |ρL − ρ0| ≪ ρ0, density can, to a first approximation, be taken as uniform in x. Assuming this
to be so, find p(x, t) as a function of p0(t) = p(0, t), ρ0(t), L̈, L and x. Show that your answer is
dimensionally correct.

(b) Using the result of part (a), and Taylor’s theorem, find ρL − ρ0 as a function of ρ0, L, L̈ and the

(isentropic) bulk modulus. KS = ρ
(

∂p
∂ρ

)

S
.

(c) Estimate (ρL − ρ0)/ρ0 for a car engine idling with angular velocity ω = 102 rad/s, ρ0 = 1 kg/m3,
KS = 105 Pa when L = 0.1 m: assume that L̈ = ω2L.

O

x

L(t)

gas

Solution

(a) Euler equation: ∂p
∂x

= −ρ(0, t) L̈
L
x,

⇒ p(x, t) = p(0, t)− ρ(0, t)
L̈

2L
x2 (2.1)

Dimensions
L.H.S. : [p] = FL−2 = ML−1T−2.
R.H.S. : [ρL̈x2/L] = ML−3L3T−2L−1,= ML−1T−2. Consistent.

(b) Taylor’s theorem:

ρ(L, t) = ρ(0, t) + {pL(t)− p0(t)}
(∂p

∂ρ

)

S

∣

∣

∣

∣

0

+ h.o.t. (2.2)

⇒
ρL − ρ0

ρ0
=

pL − p0
(KS)0

. (2.3)

By substituting into (2.3) the result of evaluating (2.1) at x = L,

ρL − ρ0
ρ0

= −ρ0
LL̈

2(KS)0
. (2.4)

(c) For the numbers given,
∣

∣

∣

ρL − ρ0
ρ0

∣

∣

∣
= ρ0ω

2
L2

2(KS)0
,= 5× 10−4.
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