
(1a) Suppose x_{n} is a sequence of real numbers defined by $x_{0}=1$ and

$$
x_{n+1}=2 x_{n}-\frac{1}{2} x_{n}^{2}=g\left(x_{n}\right) .
$$

Assume $x_{n} \rightarrow x$ for some x as $n \rightarrow \infty$. Show that

$$
\left|x_{n+1}-x\right| \leq \frac{1}{2}\left|x_{n}-x\right|^{2} .
$$

(1b) In floating point arithmetic, x_{n} is approximated by y_{n} satisfying

$$
y_{n+1}=\mathrm{fl}\left(x_{n+1}\right)=\left(2 y_{n}-\frac{1}{2} y_{n}^{2}\left(1+\delta_{n}\right)\right)\left(1+\delta_{n}^{\prime}\right)
$$

where division and multiplication by 2 are exact, $\left|\delta_{n}\right| \leq \epsilon$, and $\left|\delta_{n}^{\prime}\right| \leq \epsilon$. Show that

$$
\left|y_{n+1}-x\right| \leq \frac{1}{2}\left|y_{n}-x\right|^{2}+4 \epsilon+O\left(\epsilon^{2}\right)
$$

and describe the behavior of $\left|y_{n}-x\right|$ as $n \rightarrow \infty$.
(2a) Define the centered difference quotient by

$$
D_{h} f(x)=\frac{f(x+h)-f(x-h)}{2 h} .
$$

Use Taylor expansion to show that

$$
\left|D_{h} f(x)-f^{\prime}(x)\right| \leq \frac{M_{3}}{6} h^{2}
$$

whenever $\left|f^{\prime \prime \prime}(x)\right| \leq M_{3}$ for all x.
(2b) Suppose f can be evaluated with relative error bounded by ϵ. Show that floating-point arithmetic with machine epsilon ϵ gives

$$
\left|\mathrm{fl}\left(D_{h} f(x)\right)-D_{h} f(x)\right| \leq \frac{6 M_{0} \epsilon}{h}+O\left(\epsilon^{2}\right)
$$

whenever $|f(x)| \leq M_{0}$ for all x.
(2c) Combining (2a) and (2b) and dropping $O\left(\epsilon^{2}\right)$ terms gives an error bound

$$
\left|f^{\prime}(x)-\mathrm{fl}\left(D_{h} f(x)\right)\right| \leq \frac{M_{3}}{6} h^{2}+\frac{6 M_{0} \epsilon}{h}=F(h) .
$$

Find h (as a function of ϵ, M_{0}, and M_{3}) which minimizes $F(h)$ and evaluate the minimum value of $F(h)$.
(3a) Let $p(x)$ be the quadratic polynomial interpolating function values $f\left(x_{1}\right), f\left(x_{2}\right)$ and $f\left(x_{3}\right)$ at equally spaced points $x_{1}=-h, x_{2}=0$ and $x_{3}=h$.

Give a formula for the error $f(x)-p(x)$ which includes a k th derivative $f^{(k)}(\xi)$ evaluated at an unknown point ξ. Explain why the value of k is inevitable.
(3b) For the specific function $f(x)=|x|$ show that the error $f(x)-p(x)$ is $O(h)$ when $|x| \leq h$ and explain the apparent contradiction with (3a).
(4a) Find constants a and b such that the numerical integration rule

$$
\int_{0}^{3} f(x) d x=a f(0)+b f(2)
$$

is exact whenever f is a polynomial of degree 2 .
(4b) Assume we know the a and b from question (4a). Write down weights w_{1} and w_{2} such that

$$
\int_{0}^{3 h} g(x) d x=w_{1} g(0)+w_{2} g(2 h)+O\left(h^{4}\right) .
$$

