

## Math 55

## PROFESSOR KENNETH A. RIBET

# First Midterm Examination <br> February 21, 2019 

12:40-2:00PM, 2050 VLSB


SID:

## Circle your GSI's name:

Christopher Miller

## Katrina Biele <br> Max Wimberley

## Ben Castle <br> Dylan Yott

## Rahul Dalal <br> Dongxiao Yu

At the conclusion of the exam, hand your paper in to your GSI.
Please put away all books, calculators, cell phones and other devices. You may consult a single twosided sheet of notes. Please write carefully and clearly, USING SENTENCES (not just symbols). Remember that the paper you hand in will be your only representative when your work is graded. Please write your name clearly on each page of your exam. Your paper will be scanned and will be processed using Gradescope. It is essential that you hand in all pages that you have received (including this cover sheet) and that the order of the pages be preserved. You do not need to hand in the sheet of notes that you brought with you to the exam. You do not need to simplify arithmetic expressions.

Your booklet should contain this cover page and six pages with problems on them; there are seven pages in all. The backs of all pages may be used for scratchwork or for continuations of your answers. If a solution spans more than one page, please indicate that clearly so that the solution will be read in its entirety.

$$
\begin{array}{r||l|l|l|l|l|c}
\text { Problem } & 1 & 2 & 3 & 4 & 5 & 6 \\
\text { Total } \\
\hline \text { Points } & 6 & 6 & 5 & 6 & 5 & 6
\end{array}
$$

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.

Math 55 midterm exam, February 21, 2019

NAME: $\qquad$ SID: $\qquad$

NAME: $\qquad$ SID: $\qquad$

1a. If $S$ is a subset of a countable set, is $S$ necessarily countable? Explain your answer carefully, outlining a proof or giving a counterexample.
b. Suppose that $f: T \rightarrow\{1,2,3, \ldots\}$ is an onto function. Is the set $T$ necessarily countable?

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.

Math 55 midterm exam, February 21, 2019

NAME: $\qquad$ SID: $\qquad$
$\qquad$ SID: $\qquad$
2. Using mathematical and logical operators, predicates, and quantifiers (where the domain consists of all integers) express: "The difference of two positive integers is not necessarily positive."

Math 55 midterm exam, February 21, 2019

NAME: $\qquad$ SID: $\qquad$

Math 55 midterm exam, February 21, 2019

NAME: $\qquad$ SID: $\qquad$
3. Prove or disprove: if $A$ and $B$ are sets, then $\mathcal{P}(A \times B)=\mathcal{P}(A) \times \mathcal{P}(B)$.

Math 55 midterm exam, February 21, 2019

NAME: $\qquad$ SID: $\qquad$

NAME: $\qquad$ SID: $\qquad$
4. Use the Euclidean algorithm to find the gcd of 39 and 57 and to write the gcd as a linear combination of 39 and 57.

Math 55 midterm exam, February 21, 2019

NAME: $\qquad$ SID: $\qquad$
$\qquad$ SID: $\qquad$
5. Find the smallest non-negative integer satisfying the three congruences

$$
x \equiv \begin{cases}-3 & \bmod 19 \\ -3 & \bmod 20 \\ -3 & \bmod 21\end{cases}
$$

(Explain carefully how you got your result.)

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others.

Math 55 midterm exam, February 21, 2019

NAME: $\qquad$ SID: $\qquad$

Math 55 midterm exam, February 21, 2019

NAME: $\qquad$ SID: $\qquad$
6. Use Bézout's theorem to prove that if $a$ is relatively prime both to $b$ and to $c$, then $a$ is relatively prime to $b c$. In symbols:

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(a, c)=1 \quad \xrightarrow{?} \quad \operatorname{gcd}(a, b c)=1 .
$$

Math 55 midterm exam, February 21, 2019

NAME: $\qquad$ SID: $\qquad$

