MATH 54: MIDTERM 2 SOIUTIONS

Tuesday, 2 April 2019
Prof. Ming Gu

1. Basis for a set of vectors

The specified set of vectors consists precisely of

$$
\left\{\left.\alpha\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+\beta\left[\begin{array}{r}
-2 \\
5 \\
1
\end{array}\right]+\gamma\left[\begin{array}{r}
5 \\
-8 \\
1
\end{array}\right] \right\rvert\, \alpha, \beta, \gamma \in \mathbf{R}\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{r}
-2 \\
5 \\
1
\end{array}\right],\left[\begin{array}{r}
5 \\
-8 \\
1
\end{array}\right]\right\}
$$

The set of vectors on the right may not be linearly independent; to find a basis we should identify a linearly independent subset. This is equivalent to finding a basis for the column space of the matrix with these vectors as its columns. We make the following row reduction:

$$
\left[\begin{array}{rrr}
1 & -2 & 5 \\
2 & 5 & -8 \\
3 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & -2 & 5 \\
0 & 9 & -18 \\
0 & 7 & -14
\end{array}\right] \sim\left[\begin{array}{rrr}
1 & -2 & 5 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]
$$

Since there are pivots in the first two columns, we conclude that a basis for the set of vectors given is

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{r}
-2 \\
5 \\
1
\end{array}\right]\right\}
$$

2. Rank is unchanged by augmenting with an element of the column space

The rank of A is the number of pivots in its REF. Since $\mathbf{b}=A \mathbf{x}$ for some \mathbf{x}, the matrix $[A: \mathbf{b}]$ represents a consistent system and thus its REF has no pivot in the augmented column. Thus the number of pivots of the REF of A equals that of $[A: \mathbf{b}]$; in other words, they have the same rank.

3. Matrix power

The characteristic polynomial of this matrix is

$$
\chi_{A}(t)=\operatorname{det}\left[\begin{array}{cc}
4-t & -3 \\
2 & -1-t
\end{array}\right]=(4-t)(-1-t)+6=t^{2}-3 t+2=(t-1)(t-2)
$$

Thus the eigenvalues of A are $\lambda=1,2$. The corresponding eigenspaces are

$$
\operatorname{ker}(A-\mathrm{Id})=\operatorname{ker}\left[\begin{array}{ll}
3 & -3 \\
2 & -2
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\} \quad \text { and } \quad \operatorname{ker}(A-2 \mathrm{Id})=\operatorname{ker}\left[\begin{array}{ll}
2 & -3 \\
2 & -3
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right\}
$$

If we form the matrix P whose columns are the eigenvectors, we may diagonalize $A=P D P^{-1}$:

$$
\begin{aligned}
A=\left[\begin{array}{ll}
1 & 3 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & \\
& 2
\end{array}\right]\left[\begin{array}{rr}
-2 & 3 \\
1 & -1
\end{array}\right] \Longrightarrow A^{20} & =\left[\begin{array}{ll}
1 & 3 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
1^{20} & \\
& 2^{20}
\end{array}\right]\left[\begin{array}{rr}
-2 & 3 \\
1 & -1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 3 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
-2 & 3 \\
2^{20} & -2^{20}
\end{array}\right] \\
& =\left[\begin{array}{cc}
-2+3 \cdot 2^{20} & 3-3 \cdot 2^{20} \\
-2+2^{21} & 3-2^{21}
\end{array}\right]
\end{aligned}
$$

4. Lengths and distances

The norms of $\mathbf{u}=(3,4,3)$ and $\mathbf{v}=(2,-3,2)$ are

$$
\|\mathbf{u}\|=\sqrt{3^{2}+4^{2}+3^{2}}=\sqrt{\sqrt{34}} \quad \text { and } \quad\|\mathbf{v}\|=\sqrt{2^{2}+(-3)^{2}+2^{2}}=\sqrt{17} .
$$

The distance between them is

$$
\|\mathbf{u}-\mathbf{v}\|=\sqrt{(3-2)^{2}+(4-(-3))^{2}+(3-2)^{2}}=\sqrt{\sqrt{51}}
$$

And they are orthogonal since $\mathbf{u} \cdot \mathbf{v}=3 \cdot 2+4 \cdot(-3)+3 \cdot 2=6-12+6=0$.

5. Orthogonal basis

Since W is spanned by the three linearly independent vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$, it is three-dimensional. Therefore any three linearly independent vectors in W will form a basis for W. Since $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are nonzero orthogonal vectors, they are linearly independent, and since there are three of them, they constitute a basis for W.

