
University of California, Berkeley-College of Engineering

Department of Electrical Engineering and Computer Sciences

Spring 2017 Instructors: Nicholas Weaver, Gerald Friedland 2017-05-09

:(CS61C FINAL

After the exam, indicate on the line above where you fall in the emotion spectrum between "sad" & "smiley" ...

Last Name

First Name

Student ID Number

CS61C Login cs61c-

The name of your SECTION TA and time

Name of the person to your LEFT

Name of the person to your RIGHT

All the work is my own. I had no prior knowledge of the exam
contents nor will I share the contents with others in CS61C

who have not taken it yet. (please sign)

Instructions (Read Me!)

• This booklet contains 16 numbered pages including the cover page.

■

■

• Please turn off all cell phones, smartwatches, and other mobile devices. Remove all hats & headphones.

Place your backpacks, laptops and jackets under your seat.
• You have 180 minutes to complete this exam. The exam is closed book; no computers, phones, or

calculators are allowed. You may use three handwritten 8.5"x11" page (front and back) crib sheet in addition

to the MIPS Green Sheet, which we will provide.
• There may be partial credit for incomplete answers; write as much of the solution as you can. We will deduct

points if your solution is far more complicated than necessary. When we provide a blank, please fit your

answer within the space provided.
• Scores for Q1-Q3 will be used for Midterm 1 clobbering and scores Q4-Q6 will be used for Midterm 2

clobbering

Q1 Q2 Q3 Q4 QS Q6 Q7 QS Q9 Q10 Total

Points 15 10 10 10 10 15 10 20 15 5 120

Possible

test extracted with love by Apartment 401: Paul Ngo, Brian Nguyen, Felix Lin, Hiun Shim, Larry Wu, Bell Wu, Caleb Kuo

Q1: Many, Many Matrices (15 points)

In this problem, you will be asked to implement operations on a data structure that represents a set of
2D matrices. As the structure is a collection of matrices, it can be conveniently defined as a triple
pointer, as such: int ***matrices. For simplicity, we will only consider square matrices of integers.

Please fill in the blanks in the functions below to complete the desired implementation. You may not

need all of the lines provided.

When completing the functions, you may use the following assumptions:
• All pointers are valid and non-NULL
• All calls to malloc are guaranteed to succeed and do not need to be checked
• All dimension and number counts are valid, meaning that we never pass in the dimension

value of a matrix that is larger or smaller than the actual dimension
• For multiplication, you may assume that the dimensions align such that the matrix

multiplication is valid
• For any matrix m, the value at the ith row and jth column is denoted by m [i] [j] .

You MAY NOT assume that the size of an integer is 4 bytes, the size of a character is 1 byte etc.

Each function has a description of what it does. You may find it helpful to see the example of the
product of a matrix and vector shown below.

[
aoo ao1 ao2]
a10 au a12
a20 a21 a22

// Allocates all memory for a set of "numMatrices" matrices, each with
// dimensions "dim x dim". Does not initialize the values in each matrix.
int ***allocate(int numMatrices, int dim) {

}

int ***matrices= (int ***) malloc(sizeof(int **) * numMatricies);
for (int i= 0; i < numMatrices; i++) {

matrices[i] =(int **) malloc(sizeof(int *) * dim);
for (int j = 0; j < dim; j++) {

matrices[i][j] =(int *) malloc(sizeof(int) * dim);

}
}
return matrices;

2/17

test extracted with love by Apartment 401: Paul Ngo, Brian Nguyen, Felix Lin, Hiun Shim, Larry Wu, Bell Wu, Caleb Kuo

II Multiplies the kth matrix in the set with the vector provi des an d

II retu rns this new vector
int *multiply(int ***matrices, int *vector, int k, int dim) {

}

int *product= (int*) malloc(sizeof(int) * dim); II Coul d use calloc he re
for (inti= 0; i < dim; i++) { II An d not have this loop

product[i] = 0;

}
int **matrix= matrices[k];
for (inti= 0; i < dim; i++) {

}

for (int j = 0; j < dim; j++) {
product[i] += vector[j] * matrix[i][j];

}

retu rn product;

II Free's all memory f rom the given set of matrices
voi d f reeMatrices(int ***matrices, int numMatrices, int dim) {

for (inti= 0; i < numMatrices; i++) {

for (int j = 0; j < dim; j++) {
f ree(matrices[i][j]);

}
f ree(matrices[i]);

}
f ree(matrices);

}

3/17

test extracted with love by Apartment 401: Paul Ngo, Brian Nguyen, Felix Lin, Hiun Shim, Larry Wu, Bell Wu, Caleb Kuo

Q2: Memory State Warriors (10 points)

1) Consider the block of code below. You may assume all calls to malloc succeed.

#define TEAMS 30

char *steph = "curry";

int main(void) {

char *kevin = "durant";

char klay[9] = "thompson";

int wins = 67;

char **warriors = malloc(3 * sizeof(char *));

warriors[0] = kevin;

warriors[l] = steph;

warriors[2] =(char *) klay;

char ***nba = malloc(TEAMS * sizeof(char **));

*nba = warriors;

return wins;

For the code on the previous page, please list on what region of memory the following

variables/quantities reside right before the function main returns. If there are multiple answers, write

all possible regions.

Variable/Quantity

nba

*nba

**nba

**((*nba) + 1)

klay

steph

TEAMS

Region of Memory

Stack

Heap

Heap

Static

Stack

Static

Code

4/17

test extracted with love by Apartment 401: Paul Ngo, Brian Nguyen, Felix Lin, Hiun Shim, Larry Wu, Bell Wu, Caleb Kuo

2) Consider the block of code below that, when given a value n, returns an array with the integer

values from 1 to n. Are there any issues with the function? If yes, then list all issues with a brief

explanation of each one on the lines below. Furthermore, for each issue you outline, describe how to

fix the problem on following line. You may or may not need all lines.

int *array_of_n(int n) {

int arr[n];

}

for (inti= 0; i <= n; i++) {

arr[i] = i + 1;

}

return arr;

1. Problem: The array is allocated on the stack of the local frame, which will be free'd when the

function returns

Solution: Dynamically allocate memory for the array (malloc or calloc)

2. Problem: Accessing the nth element of the array, which is beyond the array's bounds. This

could segfault or corrupt other values on the stack.

Solution: Make limit for the for loop i < n instead of i <= n

3. Problem: Undefined behavior if n is negative

Solution: Check for negative values of n, and return NULL if so

5/17

test extracted with love by Apartment 401: Paul Ngo, Brian Nguyen, Felix Lin, Hiun Shim, Larry Wu, Bell Wu, Caleb Kuo

Q3: Back at it Again with Mipstery (10 points)

Mipstery is known to take in one positive integer as the only argument. Assume Mipstery resides at

address OxABCDEEFF. [Hint: do not try to interpret Mipstery immediately (part d) -- parts a-c

can be answered without first understanding the entire program!]

Mipstery: 1. addiu $t0, $0, 1

2. addu $s0, $t0, $0

3. la $tl, Mipstery

4. lw $t2, 4($tl)

5. li $t3, 0x7FFF

6. and $t4, $t3, $t2

7. ori $t4, $t4, 32768 # 32768 = 2/\15

8. sll $t2, $t2, 20

9. or $ts, $t2, $t4

10. SW $ts, 4($tl)

11. addiu a0, a0, -1

12. bne $a0, $0, Mipstery

13. move $v0, $s0

14. j done

(a) Which instruction gets modified in the above code? Give the line number.

Line 2

(b) Notice that "la" and "Ii" (line 3 and line 5) are both pseudo-instructions. Assemble these instructions into

TAL as efficiently as possible, recalling specifications for the pseudo-instructions from your project 2.

li $t3, 0x7FFF

ADDIU $t3, $0, 0x7FFF # recall proj2

la $tl, Mipstery

lui $at, 0xABCD

ori $tl, $at, 0xEEFF or: ORI $t3, $0, 0x7FFF specifications

(c) Convert the bne instruction (line 12 in the MAL code above) into machine code, assuming that "la" gets

expanded into 1 instruction and "Ii" gets expanded into 3 instructions. Express your answer as a

hexadecimal number.

The imm offset for bne should be -(12 + 2) = -14. (2 is for 2 expanded instructions)

(d) (Hard) In one sentence: What does Mipstery do? Assume $a0 is always positive. [Hint: first convert the

modified instruction into hex!]

It computes power of 2.

6/17

test extracted with love by Apartment 401: Paul Ngo, Brian Nguyen, Felix Lin, Hiun Shim, Larry Wu, Bell Wu, Caleb Kuo

Q4: When Memory Encounters Branches (10 points)
Consider the new instruction "memory branch equal":

membeq $rs, $rt, label

It performs the following operation:

if (Mem[R[$rs]] == Mem[R[$rt]]):

R[$at] +- 1

PC+- PC + 4 + BranchAddr

Else:

R[$at] +- 0

PC+- PC + 4

Your task is to modify the single cycle MIPS CPU you have seen in lecture to support membeq while

maintaining functionality of the rest of the MIPS ISA.

(a) First, assume you are free to modify the wires and gates, but cannot modify the major

components (Instruction Memory, Regfile, ALU, Data Memory). Are you able to implement this

instruction using our current CPU datapath? In one sentence, explain your answer.

NO, because it requires two individual data memory outputs, but current memory component

only supports one input/output port ..

(b) Now assume that you CAN modify ONE major component listed in part (a), and you may add

to it one new input and one output, called newinput and newoutput, which you may define as

you'd like. You may also modify wiring and gates in areas labelled (i), (ii), (iii) and (modified) in

your diagrams packet. Select the correct implementation for the blanks (i), (ii) and (iii) from

the choices in the packet. If multiple solutions exist choose the one that uses the least

amount of hardware. Also note that two of the control signals have been defined for

membeq in part (c) below.

Select the correct implementations for the given blanks:

(i) (iii)

C D

(ii)

A (8 also accepted since
we didn't explicitly extend
EQL)

(c) List the values of all control signals for the membeq instruction in the table below. If the value of

a particular signal does not matter, you must put an 'X'. For the ALU Ctr field, write the name of

the operation the ALU should execute.

Jump membeq RegDst RegWr ExtOp ALUSrc ALUCtr MemWr MemToReg Branch

0 1 X 1 1 X xxxx 0 X 0

7/17

test extracted with love by Apartment 401: Paul Ngo, Brian Nguyen, Felix Lin, Hiun Shim, Larry Wu, Bell Wu, Caleb Kuo

QS: Pipelining (1 O points)

RegFile RegFile Register Register Register Control ALU Adder
Read Setup Clk-To-Q Setup Hold Unit

200ps 200ps 100ps 100ps 100ps 300ps 300ps 100ps

Shifter Mux Or Gate Memory Memory Extender Hazard

Read Write Detection

100ps 100ps 100ps 400ps 400ps 200ps 100ps

See the simplified MIPS Pipeline attached in the packet and labelled "QUESTION 5." This processor

can execute the following instructions: ADD, ADDI, SUB, LW, SW, BEQ. Note that branches

change the PC in the MEM stage. Register values must be read during ID. New values are available

from the Register File after WB.

1. What is the highest frequency that this CPU can run at?

1.25 GHz

a. (Fill out to facilitate partial credit) In what stage is the critical path?

Mem->Branch->Decode

b. (Fill out to facilitate partial credit) What is the critical path delay of that path?

2. Fill in the bubbles next to lines of code that contain hazards for this program.

0 LW $s4, 0($sl)

0 ADDI $s4, $s4, 8 THIS

0 ADD $s4, $s4, $s3 THIS

0 ADDI $sl, $sl, -4

0 BEQ

0 LW

0 SW

$s4, $zero, DONE //Assume taken THIS

$s4, 0($sl) THIS

$s4, 4($s2) THIS

DONE:

800ps

3. Now, assume we resolve hazards by stalling. How many cycles would the program from part 2

take to execute?

Number of Cycles: 17 until Fetch of DONE, 18 until WB of BEQ

8/17

test extracted with love by Apartment 401: Paul Ngo, Brian Nguyen, Felix Lin, Hiun Shim, Larry Wu, Bell Wu, Caleb Kuo

Q6: Cold Cache, Divine (15 points)

Given the following specifications of the following caches, fill in the blanks with the correct value or

term. For each of these scenarios, assume you are working with a 24 bit physical address space on a

byte-addressed machine. Be as precise in your answer as possible (don't leave variables in your

answer).

Cache 1: Cache 2:

Type: Type:

Size: Size:

of Sets: # of Sets:

Tag Bits: Tag Bits:

Index Bits:

Direct Mapped

256B

32

16

5 Index Bits:

8-way set associative

32KiB

64

12

6

Offset Bits: 3 Block Size: 64B

Cache 1: You get the index bits from taking the log base 2 of the number of sets, so you get 5. The
offset bits are everything that's not the index and tag bits, so that's 3. In a direct mapped cache, all
the total number of blocks are the total number of sets, so there's 32 blocks. The block size is

A

2 3=8B. Thus, the total size is 8*32=256B

Cache 2: You get the offset bits by taking the log base 2 of the block size, so you get 6. The index bits
are everything that's not the tag and offset bits, so that's 6. The number of sets is 2/\(index bits) so
that's 64 sets. To figure out what kind of cache it is, you need to observe that the size is 32KiB =

/\

2 1 SB, and that since each block is 64=2A6B, then there are 2/\ 15/2/\6 = 2/\9 blocks. Since there are A

2 6 sets, then each set needs to hold 2A9/2A6=2A3 blocks in them, and thus, there are 8 ways.

Consider the following C code:

#define ARRAY SIZE 128*1024
double a[ARRAY_SIZE];
int i, j;
void normalize(int vect_size){

}

for (i = 0; i < ARRAY_SIZE, i+=vect_size) {
double squared_sum = 0.0;

}

for (j = 0; j < vect_size; j += 1) { // Innerloopl
squared_sum += a[i+j] * a[i+j];

}
rooted_sum = sqrt(squared_sum);
for (j = 0; j < vect_size; j += 1) { // Innerloop2

a[i+j] /= rooted_sum;

}

9/17

test extracted with love by Apartment 401: Paul Ngo, Brian Nguyen, Felix Lin, Hiun Shim, Larry Wu, Bell Wu, Caleb Kuo

Once again, assume we are working with 24 bit physical addresses and the byte-addressed machine

from above. Consider a 256 B direct mapped cache with 328 blocks, whose valid bits are all set to 0.

Doubles are 8 bytes, and the doubles stored in the array a are double-word aligned (e.g. at

addresses 0, 8, 16 ...).

a) Suppose that we set vect_size to be 32 such that our vectors have 32 components

(numbers) in them. We execute normalize(32); Over the entire execution, what is the hit

rate of:

Inner Loop1: ½

Block size is 328 which holds 4 doubles. We compulsory miss the first double and then we get 7 hits.

The cycle repeats and the hit rate never changes.

Inner Loop2: 100%

Given that loop 1 occurs, the four requested doubles in the block will be in the cache when loop 2

runs. Thus all the accesses will hit.

b) The cache is reinitialized (it is cold again). What is the smallest value of vect_size such that

we have the maximum possible hit rate of Inner Loop1 over the entire execution of

normalize (size);? What is the maximum possible hit rate you found?

vect size: 1

Because we pull in the entire block size when we make one array access, having a vect_size of 1 will

cause you to have a compulsory miss and then a hit, and the next 3 iterations of loop 1 will hit.

maximum possible hit rate: ½

Idea to take away: in this problem, our hit rate is capped by the block size.

c) Given that you are allowed to change a single parameter about the cache or the code, from the

following options, what can you do to increase the hit rate of Inner Loop1? Circle all answers

you believe are correct.

i) Increase cache size to be the array size

ii) Make the cache fully associative

iii) Double the block size to 648

iv) Change the line squared_sum += a[i+j] * a[i+j]; tobe

double val= a[i+j];

squared_sum += val* val;

As stated above, the only solution is to increase the block size since that is what determines our

hit rate for small values of vect size.

10/17

test extracted with love by Apartment 401: Paul Ngo, Brian Nguyen, Felix Lin, Hiun Shim, Larry Wu, Bell Wu, Caleb Kuo

Q7: Performance Programming (10 points)

1) For each snippet of code below, fill in the circles for all outputs that could be printed after
running the code. You may assume that the function printf is atomic and that OpenMP parallelizes
" for" loops using a blocking scheme as opposed to an adjacent scheme where threads process lower
index values first. For both parts, assume there are 2 threads used to parallelize the loop.

a.
#pragma omp parallel for

for (inti= 0; i < 4; i++) {

printf("%d ", i);

}

Outputs (Fill in ALL possible outputs):

001 32

0 None of the outputs listed are possible

We know that one thread will do indices O and 1, while the other will do indices 2 and 3, and
the threads will process the indices in that order. T his gives us the following possible orderings:

1. T1, T1, T2, T2 --+ 0, 1, 2, 3
2. T1, T2, T1, T2--+ 0, 2, 1, 3
3. T1, T2, T2, T1--+ 0, 2, 3, 1
4. T2, T2, T1, T1--+ 2, 3, 0, 1
5. T2, T1, T2, T2--+ 2, 0, 3, 1
6. T2, T1, T1, T2--+ 2, 0, 1, 3

T hus, only "O 1 3 2" and "2 1 3 O" are not possible.

11/17

00123

00213

02013

test extracted with love by Apartment 401: Paul Ngo, Brian Nguyen, Felix Lin, Hiun Shim, Larry Wu, Bell Wu, Caleb Kuo

b.

int X = 0;

#pragma omp parallel for

for (inti = 1; i < 3; i++) {

X += i;

printf("%d ", x);

}

Outputs (Fill in ALL possible outputs):

0 None of the outputs listed are possible

There is a race condition on the variable x. We have to consider the following possible scenarios:
a. Thread 1 and 2 concurrently execute the incrementing of x, and both load in the value O for x.

Then, Thread 1 runs fully, setting x to 1 and then printing 1. Thread 2 will then load 2 into x (as it
did x = 0 + 2), so it prints 2. This makes the output: 1 2. As note, we could also get the output 2
1 using a similar idea, but this was not an option.

b. Thread 1 runs fully, then thread 2 runs fully: this means thread 1 will print 1, as we incremented
x by 1 and thread 2 will print 3, as we incremented x by 2. The output here would be: 1, 3

c. Thread 1 runs fully, then thread 2 runs fully: similar to the last scenario, we print 2 and then 3,
making the output: 2, 3

d. Thread 1 runs, switched before print statement, then thread 2 runs. Then we print from thread
1 and thread 2 (order doesn't matter here, as x is already 3). The value of x for thread 1 would
be with both increments, so the output would be: 3, 3

e. Thread 2 runs, switched before print statement, then thread 1 runs, then we print from thread
2. Same as (c), so we get: 3, 3

f. Thread 1 and 2 simultaneously update x, but 2 is slightly after (both load x = 0 during the
increment), so the value 2 is loaded into x (i.e. the x += 1 was overwritten). This means that the
output would be: 2, 2

g. Thread 1 and 2 simultaneously update x, but 1 is slightly after (both load x = 0 during the
increment), so the value 1 is loaded into x (i.e. x += 2 was overwritten). This means the output
would be: 1, 1

Thus, all options are valid.

12/17

012

022

013

033

011

test extracted with love by Apartment 401: Paul Ngo, Brian Nguyen, Felix Lin, Hiun Shim, Larry Wu, Bell Wu, Caleb Kuo

2) The goal of the piece of code below is to print "O 1 2". Fill in one of the following options regarding
the code and its functionality when there are 3 threads used to parallelize the loop.

#pragma omp parallel for

for (int i= 0; i < 3; i++) {

#pragma omp critical

printf("%d\n", i);

}

0 Always works, faster than serial

0 Always works, slower than serial

• Sometimes Works

0 Never Works

The critical section here ensures that only one thread will execute the print at a time, but it does not
enforce an ordering amongst the threads. Thus, the critical section is useless (printf was given to be
atomic). This means that the output depends on the ordering in which the threads execute, which is
non-deterministic, so it may be that the ordering causes "O 1 2" to print (runs Thread 1, Thread 2, and
then Thread 3), but this may not be the case (i.e. "2 1 O" could be printed if the reverse order occurs).
Therefore, this code sometimes works.

13/17

0 Sometimes Works

test extracted with love by Apartment 401: Paul Ngo, Brian Nguyen, Felix Lin, Hiun Shim, Larry Wu, Bell Wu, Caleb Kuo

Q8: I have virtually no memory of this ... (20 points)
We have 2 machines, A and B, both with a 4 entry TLB, 4 KiB pages, 16 MiB physical memory,

and 4 GiB (32b address space) of virtual memory. They both have the same TLB and Page Table

state, shown below. The only difference between these 2 machines is that, to store additional data

beyond the capacity of physical memory, machine A uses a hard disk drive and machine B uses a

SSD. On both machines, we run the same program that has the following memory accesses made in

the order given below.

Accesses:

R 0xA000000S

W 0xA0004FFC

W 0xA0001234

TLB: Page Table: shown starting from index 0xA0000.

VPN PPN Valid Dirty LRU PPN Valid Bit Dirty Bit

Bit Bit
0x609 1 1

0x80003 0x649 1 0 0
0x61F 1 0

0xA0001 0x61F 1 0 1
0x620 0 0

0xBFFEC 0x613 1 1 2
0x625 1 1

0xBFFEB 0x612 1 1 3
0x629 0 0

0x62B 1 0

0x62E 0 0

1. Translate the virtual address 0xA0000008 to its corresponding physical address.

0x609008

2. Let us now analyze how our accesses progress through memory.

a. Consider the possible access progressions below. Next to each access, write the letter

corresponding to its access progression.

a. TLB Hit, neither Page Hit nor Page Fault

b. TLB Hit, Page Hit

c. TLB Hit, Page Fault

d. TLB Miss, neither Page Hit nor Page Fault

e. TLB Miss, Page Hit

f. TLB Miss, Page Fault

R 0xA000000S E W 0xA0004FFC F

14/17

W 0xA0001234 A

test extracted with love by Apartment 401: Paul Ngo, Brian Nguyen, Felix Lin, Hiun Shim, Larry Wu, Bell Wu, Caleb Kuo

b. Given the following times to access each component, calculate the latency of

W 0xA0002FFC on Machine A and Machine B. Remember to include in your

calculations, the time to translate addresses, the time to get the corresponding data at

that address, and the time to update any necessary caches and/or tables. Hardware

accesses do NOT happen in parallel (e.g. accessing the TLB and physical memory at

the same time is not possible, one must happen first and then the next). There is no

data cache for physical memory.

Accessing TLB (us) Accessing Physical Memory Accessing HOD (us) Accessing SSD

(us) (us)

0.001 0.1 3000 450

TLB Miss + Page Fault => Access TLB + Access PM (page table)+ Access Disk/SSD + Update PM with data

+ Update Page Table (PM) + Update TLB = 3000.302 us (Disk) or 450.302 (SSD)

A:

3000.302us

B: 450.302us

3. Both machines now starts running a new program that reads all of a 1 MiB file, which is stored

entirely on disk. Assume that this program's page table has no virtual memory mappings for

this file.

a. The file is memory mapped through the virtual memory system, and the program simply

touches every page in the file (e.g. reads 1 byte from each page). How many page

faults would occur from reading this file?

2"20 B (file)/ 2"12 B (per page)= 2"8 pages, each is a fault

b. How long would it take to process all of the page faults from part (a) on both systems?

Use the same access times as in the previous section 2.b. You may leave your answer

as an unsimplified expression, and may use PF in place of your answer to part (a).

A: PF * 3000.302

B: PF * 450.302

c. Now assume the file is laid out contiguously on disk and the program instructs the

operating system to load the entire 1 MiB file in a single request. If there is a sustained

transfer rate of 20 MiB/us for both systems, how long does this take to process for

system A? How long for system B?

Time to find first page + Time to continuously read in file = Latency from Part 2 + 1 MiB /

(20MiB/us) = 3000.302 + 0.05 AND 450.302 + 0.05

A: 3000.352us

B: 450.352us

15/17

test extracted with love by Apartment 401: Paul Ngo, Brian Nguyen, Felix Lin, Hiun Shim, Larry Wu, Bell Wu, Caleb Kuo

Q9: 1/0 (15 points)

An important advantage of interrupts over polling is the ability of the processor to perform other tasks

while waiting for communication from an 1/0 device. Suppose that a 1 GHz processor needs to read

1000 bytes of data from a particular 1/0 device. The 1/0 device supplies 1 byte of data every 0.02 ms.

The time to process the data and store it in a buffer is negligible.

a) Assume a polling iteration takes 60 cycles. If the processor detects that a byte of data is ready

through polling:

1. How many cycles does it take for the 1/0 device to supply 1 byte of data?

20,000

2. How many polling iterations does it take to read 1 byte of data? (round up to an integer)

3. How many cycles does it take to read the 1000 bytes of data?

334
- --

20,040,000

b) If instead, the processor is interrupted when a byte is ready, and the processor spends the time

between interrupts on another task, how many cycles of this other task can the processor complete

while the 1/0 communication is taking place? The overhead for handling an interrupt is 2000 cycles.

18,000,000

c) The advantage of polling however arises when data rates become very large so that the interrupt

overhead becomes substantial and at some point the system simply can't keep up. What is the data

arrival time (in ms) at which point an interrupt-driven 1/0 scheme on this computer can't keep up with

the data coming in? The overhead for handling an interrupt is 2000 cycles.

2000 / 1 GHz = 0.002ms

16/17

solutions made with love by Apartment 401: Paul Ngo, Brian Nguyen, Felix Lin, Hiun Shim, Larry Wu, Bell Wu, Caleb Kuo

test extracted with love by Apartment 401: Paul Ngo, Brian Nguyen, Felix Lin, Hiun Shim, Larry Wu, Bell Wu, Caleb Kuo

Q10: Potpourri (5 points}

a) One byte of data is encoded in Hamming ECC with single-error correction. The result is the 12-bit
number 0xdd3. What was the original byte of data? [Remember to check that the data is correct!]

1110 0011
--- -------

b) Fill in the bubble for all statements that are True:

 RAID 5 has better fault tolerance than RAID 0

RAID 5 has better fault tolerance than RAID 1 (nope, same)

RAID O can store data more compactly than RAID 1 (no redundancy)

RAID 5 can store data more compactly than RAID 1 (more efficient)

RAID O reads faster than RAID 1 (either choice is fine, multi-small reads are

better for RAID1 while single reads are better for RAID 0),

RAID 5 writes faster than RAID 1 (nope, Raid5 needs 2x read first)

c) Two machines are being considered for purchase. The SuperDuper machine has a Mean Time to
Failure (MTTF) of 24 hours and a Mean Time to Repair (MTTR) of 6 hours, while the
UnbelievablyGreat machine has a MTTF of 4 hours and a MTTR of 1 hour.

A. What's the availability of the SuperDuper Machine?

B. What's the availability of the UnbelievablyGreat Machine?

d) In which step of CALL is machine code first generated?

0 Compiler

0 Assembler

0 Linker

0 Loader

17/17

0
.
8

__

0
.
8

__

test extracted with love by Apartment 401: Paul Ngo, Brian Nguyen, Felix Lin, Hiun Shim, Larry Wu, Bell Wu, Caleb Kuo

