Midterm examination 1

2 Questions for a total of 40 points in 40 minutes
Instructions:

- The exam is closed-book, closed-notes.
- No calculators allowed.
- Write only in pen, not pencil.
- Clearly number all solutions.
- We have no patience for dishonesty or apparent dishonesty.
- You may tear off the front page (these problems).
- Write your name / student ID on all solution sheets.

Question 1: A particle launched over a slope [10 points]

A particle of mass m starts at the origin at a velocity $\boldsymbol{v}_{0}=v_{0 y} \boldsymbol{E}_{y}$, as shown on the figure. The motion is over a slope, which makes an angle of α with the horizontal.

(a) [2 points] Draw a free-body diagram of the particle in flight. Neglect any aerodynamic drag effects, and clearly give the direction of all forces.
(b) [5 points] Show that the time at which the particle impacts the slope is given by

$$
T=\frac{2 v_{0 y}}{g \cos \alpha}
$$

(b) [3 points] How far from the origin along \boldsymbol{E}_{x} does the particle impact the slope?

Question 2: A car drives over a peak [30 points]

A car of mass m drives over a parabolic peak at a constant speed v moving from left-to-right, shown in the figure below. Treat the car as a particle for this problem.

The car's position is given by $\boldsymbol{r}=x \boldsymbol{E}_{x}+y \boldsymbol{E}_{y}$, and the car starts at $x=x_{0}$. The height of the road surface at a distance x along \boldsymbol{E}_{x} is given by $-x^{2}$.
(a) [5 points] Assume that the car remains on the surface of the road. Show that the rate with which the vehicle moves along the horizontal axis is as below, showing all steps.

$$
\begin{equation*}
\dot{x}=\frac{v}{\sqrt{1+4 x^{2}}} . \tag{1}
\end{equation*}
$$

At which point along the trajectory is the horizontal component of velocity maximized?
(b) [9 points] Assume that the car remains on the surface of the road. Recall the definition of the normaltangential coordinates:

$$
\begin{aligned}
\boldsymbol{e}_{t} & :=\frac{\mathrm{d}}{\mathrm{~d} s} \boldsymbol{r} \\
\kappa \boldsymbol{e}_{n} & =\frac{\mathrm{d}}{\mathrm{~d} s} \boldsymbol{e}_{t}
\end{aligned}
$$

Starting with the definition show that the following hold:

$$
\begin{aligned}
\boldsymbol{e}_{t} & =\frac{1}{\sqrt{1+4 x^{2}}}\left(\boldsymbol{E}_{x}-2 x \boldsymbol{E}_{y}\right) \\
\boldsymbol{e}_{n} & =\frac{1}{\sqrt{1+4 x^{2}}}\left(-2 x \boldsymbol{E}_{x}-\boldsymbol{E}_{y}\right)
\end{aligned}
$$

Hint: Note that one can compute \boldsymbol{e}_{n} without the curvature κ. You may find it helpful to express $\mathrm{d} s$ in terms of \dot{x}, v, and $\mathrm{d} x$.
(c) At a sufficiently high speed $v>v_{c}(x)$, the car will leave the surface of the road at horizontal position x. You may take for granted the curvature of the road κ, and the acceleration vector \boldsymbol{a}, as given below:

$$
\begin{aligned}
\kappa & =\frac{2}{\left(1+4 x^{2}\right)^{\frac{3}{2}}} \\
\boldsymbol{a} & =\frac{\mathrm{d} v}{\mathrm{~d} t} \boldsymbol{e}_{t}+\kappa v^{2} \boldsymbol{e}_{n}
\end{aligned}
$$

Perform the following three steps, explicitly:
(i) [6 points] Draw a free body diagram of the car while it is on the road, clearly labelling all forces and indicating their directions.
(ii) [4 points] Show that the magnitude of the normal force that the road exerts on the car as a function of the speed v and the horizontal position x is given by

$$
\frac{m}{\sqrt{1+4 x^{2}}}\left|g-\frac{2 v^{2}}{1+4 x^{2}}\right|
$$

(iii) [6 points] For each horizontal coordinate x along the road, there exists a critical speed v_{c} so that the normal force is zero. Derive the expression for v_{c}. What is the lowest speed, $v_{c, \text { min }}$ for which the normal force is zero? Where does this occur along the curve?

Name: \qquad

Student ID:

The student community at UC Berkeley has adopted the following Honor Code: "As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others."

I certify that I will uphold the UC Berkeley Honor Code on this exam.

Signature

Name:
Student ID:

Name:
Student ID:

Name:
Student ID:

